AG-Grid大数据量场景下的筛选优化实践
2025-05-16 14:11:37作者:江焘钦
背景介绍
在基于AG-Grid开发的企业级应用中,处理超大规模数据集(超过10万行)时通常会采用服务器端行模型(SSRM)。这种架构下,筛选功能也需要从后端获取数据。当用户在前端进行多值筛选时,如果选择数量过大(如超过1000个值),会导致服务器请求压力过大甚至崩溃。
核心问题分析
在AG-Grid的筛选交互中,存在两个关键的技术挑战:
- 多值选择限制:默认情况下,Excel风格的筛选器没有提供限制选择数量的机制
- 键盘事件控制:即使用户界面禁用了"应用"按钮,用户仍可通过回车键触发筛选请求
解决方案探索
初始方案:前端交互控制
开发者最初尝试在前端实现选择数量限制:
onFilterModified(params) {
const totalValues = params.filterInstance.valueModel.availableKeys.size;
const selectedCount = params.filterInstance.valueModel.selectedKeys.size;
const isInvalid = selectedCount !== totalValues && selectedCount > MAX_FILTER_SELECTION;
if (isInvalid || selectedCount === 0) {
this.disableApplyFilterButton(isInvalid);
}
}
这种方法虽然可以禁用应用按钮,但无法拦截键盘事件,导致限制措施被绕过。
替代方案:自定义筛选模式
尝试改用非Excel模式的筛选器配置:
filterParams: {
buttons: ['apply', 'cancel'],
closeOnApply: true,
values: this.getFilterData.bind(this),
}
但发现新的问题:在迷你筛选输入框中输入内容后点击"应用"按钮,弹出窗口会关闭但不会触发请求,只有按回车键才有效。
最终解决方案:请求拦截机制
经过多次尝试,最终采用以下策略:
- 保持Excel模式(Windows风格)的筛选器
- 在请求发出时进行拦截检查
- 当筛选值超过限制时:
- 返回当前数据集
- 清除违规的筛选条件
// 伪代码示例
interceptRequest(params) {
if (params.filterValues && params.filterValues.size > MAX_LIMIT) {
this.gridApi.setFilterModel(null);
return currentData;
}
return fetchFromServer(params);
}
技术要点总结
- SSRM架构特性:服务器端行模型需要特别注意前端交互与后端请求的协调
- AG-Grid事件机制:理解筛选器内部的事件触发顺序是关键
- 防御式编程:在无法完全控制用户操作路径时,需要在多个层面设置防护措施
最佳实践建议
对于类似场景,推荐采用分层防御策略:
- 前端限制:设置合理的默认选择范围
- 交互反馈:及时提示用户操作限制
- 后端防护:即使前端被绕过,服务端也应设置合理的请求限制
- 性能优化:考虑实现分批加载筛选值,避免一次性获取全部选项
这种综合方案虽然不能完全阻止大请求的产生,但可以在用户体验和系统稳定性之间取得较好的平衡。对于关键业务场景,建议进一步结合虚拟滚动等技术优化整体性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248