Diffrax项目中的神经控制微分方程回归任务实践
2025-07-10 19:10:37作者:滑思眉Philip
在微分方程求解领域,Diffrax作为一个基于JAX的高性能库,为复杂微分方程的求解提供了强大的支持。本文将通过一个完整的神经控制微分方程(Neural CDE)回归任务示例,展示如何利用Diffrax解决实际问题。
背景与原理
神经控制微分方程是传统神经ODE的扩展,通过引入控制项来处理时间序列数据。其核心思想是将输入数据视为控制信号,通过微分方程的形式建模系统的动态变化。相比于离散的神经网络,这种连续时间建模方式更适合处理不规则采样或长时间依赖的数据。
实现细节
模型架构
示例中构建了一个包含以下关键组件的模型:
- 函数逼近器:使用MLP网络学习系统的动态变化
- 控制项处理:通过三次样条插值处理输入控制信号
- 微分方程求解器:采用Euler方法进行数值求解
class NeuralCDE(eqx.Module):
def __init__(self, data_size, hidden_size, width_size, depth, *, key):
self.func = Func(data_size, hidden_size, width_size, depth, key=key)
def __call__(self, ts, y0, coeffs):
control = diffrax.CubicInterpolation(ts, coeffs)
term = diffrax.ControlTerm(self.func, control).to_ode()
solver = diffrax.Euler()
solution = diffrax.diffeqsolve(term, solver, ts[0], ts[-1], dt0, y0)
return solution.ys
数据生成
为了验证模型效果,示例中构造了一个非线性振荡器数据集:
- 生成正弦和余弦组合的时间序列
- 通过微分方程转换得到目标轨迹
- 使用Hermite插值生成控制信号系数
def _get_data(ts, *, key):
# 生成初始条件
x0 = jr.uniform(key, (2,), minval=-0.6, maxval=1)
# 构造向量场
def vector_field(t, y, args):
ys = y[1:]
F = jnp.array([[ys[0], ys[1]], [ys[1], -ys[0]]])
return jnp.pad(F, [(1,0),(1,0)])
# 求解微分方程生成轨迹
sol = diffrax.diffeqsolve(...)
return sol.ys
训练技巧
在实践中发现几个关键点:
- 分阶段训练:先在小时间区间上训练,再扩展到完整区间
- 学习率调整:采用AdaBelief优化器并分阶段设置学习率
- 激活函数选择:在MLP输出层使用tanh约束输出范围
结果分析
经过训练后,模型能够较好地拟合非线性振荡器的动态:
- 训练损失稳定收敛到0.01左右
- 预测轨迹与真实轨迹在可视化上高度吻合
- 相位空间中的运动模式被准确捕捉
对于需要更高精度的场景,可以考虑:
- 使用更精细的求解器和容差设置
- 增加模型容量或调整网络结构
- 引入正则化项防止过拟合
总结
本文通过Diffrax实现了一个完整的神经控制微分方程回归任务,展示了该库在处理连续时间动态系统建模方面的强大能力。这种基于微分方程的建模方法为时间序列分析、物理系统建模等领域提供了新的思路。Diffrax的灵活接口和高效实现使得这类复杂模型的开发和实验变得更加便捷。
对于希望探索微分方程机器学习的研究者和工程师,这个示例提供了一个很好的起点,可以根据具体问题需求进行调整和扩展。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137