curl_cffi库在ARM架构macOS上的getinfo方法使用注意事项
curl_cffi是一个Python库,它提供了对libcurl的C Foreign Function Interface(FFI)绑定,允许开发者在Python中使用libcurl的强大功能。然而,在使用过程中,特别是在ARM架构的macOS系统上,开发者可能会遇到一个关于getinfo方法的常见误区。
问题现象
当开发者尝试在请求完成后使用curl.getinfo方法获取请求信息时,可能会遇到如下错误:
TypeError: initializer for ctype 'void *' must be a cdata pointer, not NoneType
这个错误通常发生在类似以下的代码中:
from curl_cffi import CurlInfo, requests
r = requests.get("https://example.com")
r.curl.getinfo(CurlInfo.TOTAL_TIME)
问题原因
这个问题的根本原因在于curl_cffi库的设计机制。在每次请求完成后,底层的curl对象会被重置(reset),这意味着请求完成后curl对象实际上已经不可用了。开发者不能像传统的Python requests库那样,在请求完成后继续使用curl对象来获取各种信息。
解决方案
curl_cffi库提供了专门的机制来获取请求信息。正确的做法是在创建Session时预先指定需要收集的信息,然后通过infos属性来访问这些信息:
from curl_cffi import CurlInfo, requests
s = requests.Session(curl_infos=[CurlInfo.TOTAL_TIME])
r = s.get("https://example.com")
print(r.infos)
这种方式不仅避免了错误,而且更加高效,因为它只收集你真正需要的信息。
最佳实践
-
预先规划信息需求:在创建Session时就明确你需要收集哪些请求信息,这样可以减少不必要的性能开销。
-
理解生命周期:要意识到curl对象在请求完成后会被重置,这是为了资源管理和性能考虑。
-
使用infos属性:这是官方推荐的获取请求信息的方式,比直接操作curl对象更可靠。
-
错误处理:即使使用了正确的方法,也要做好错误处理,因为网络请求本身就存在各种不确定性。
深入理解
curl_cffi的这种设计实际上反映了libcurl本身的工作方式。libcurl是一个高性能的C库,为了最大化性能,它会在请求完成后立即释放相关资源。curl_cffi作为其Python绑定,也遵循了这一设计哲学。
对于从传统Python HTTP客户端(如requests)迁移过来的开发者来说,这种设计可能需要一些适应。但理解这种设计背后的原因有助于编写出更高效、更可靠的网络请求代码。
总结
在ARM架构的macOS系统上使用curl_cffi时,开发者应当注意curl对象的生命周期,避免在请求完成后继续使用它。通过预先指定需要收集的信息并使用Session的infos属性,可以安全高效地获取各种请求指标。这种设计虽然与一些Python HTTP客户端的习惯不同,但它反映了底层libcurl库的高效设计理念。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00