curl_cffi库在ARM架构macOS上的getinfo方法使用注意事项
curl_cffi是一个Python库,它提供了对libcurl的C Foreign Function Interface(FFI)绑定,允许开发者在Python中使用libcurl的强大功能。然而,在使用过程中,特别是在ARM架构的macOS系统上,开发者可能会遇到一个关于getinfo
方法的常见误区。
问题现象
当开发者尝试在请求完成后使用curl.getinfo
方法获取请求信息时,可能会遇到如下错误:
TypeError: initializer for ctype 'void *' must be a cdata pointer, not NoneType
这个错误通常发生在类似以下的代码中:
from curl_cffi import CurlInfo, requests
r = requests.get("https://example.com")
r.curl.getinfo(CurlInfo.TOTAL_TIME)
问题原因
这个问题的根本原因在于curl_cffi库的设计机制。在每次请求完成后,底层的curl对象会被重置(reset),这意味着请求完成后curl对象实际上已经不可用了。开发者不能像传统的Python requests库那样,在请求完成后继续使用curl对象来获取各种信息。
解决方案
curl_cffi库提供了专门的机制来获取请求信息。正确的做法是在创建Session时预先指定需要收集的信息,然后通过infos
属性来访问这些信息:
from curl_cffi import CurlInfo, requests
s = requests.Session(curl_infos=[CurlInfo.TOTAL_TIME])
r = s.get("https://example.com")
print(r.infos)
这种方式不仅避免了错误,而且更加高效,因为它只收集你真正需要的信息。
最佳实践
-
预先规划信息需求:在创建Session时就明确你需要收集哪些请求信息,这样可以减少不必要的性能开销。
-
理解生命周期:要意识到curl对象在请求完成后会被重置,这是为了资源管理和性能考虑。
-
使用infos属性:这是官方推荐的获取请求信息的方式,比直接操作curl对象更可靠。
-
错误处理:即使使用了正确的方法,也要做好错误处理,因为网络请求本身就存在各种不确定性。
深入理解
curl_cffi的这种设计实际上反映了libcurl本身的工作方式。libcurl是一个高性能的C库,为了最大化性能,它会在请求完成后立即释放相关资源。curl_cffi作为其Python绑定,也遵循了这一设计哲学。
对于从传统Python HTTP客户端(如requests)迁移过来的开发者来说,这种设计可能需要一些适应。但理解这种设计背后的原因有助于编写出更高效、更可靠的网络请求代码。
总结
在ARM架构的macOS系统上使用curl_cffi时,开发者应当注意curl对象的生命周期,避免在请求完成后继续使用它。通过预先指定需要收集的信息并使用Session的infos属性,可以安全高效地获取各种请求指标。这种设计虽然与一些Python HTTP客户端的习惯不同,但它反映了底层libcurl库的高效设计理念。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0315- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









