如何在SentenceTransformers中自定义修改预训练模型结构
2025-05-13 15:35:08作者:沈韬淼Beryl
预训练模型结构修改概述
SentenceTransformers作为一个基于Transformer架构的句子嵌入模型库,为用户提供了灵活的模型定制能力。在实际应用中,开发者经常需要在预训练模型的基础上添加自定义层以满足特定任务需求。
模型结构层次解析
SentenceTransformers模型通常由三个主要组件构成:
- Transformer层:负责将输入文本转换为token级别的嵌入表示
- 可选的中间层:开发者可以在此处插入自定义结构
- Pooling层:将token嵌入聚合成句子级别的表示
自定义层添加方法
在Transformer层和Pooling层之间添加自定义层是完全可行的。需要注意的是,Transformer层的输出是一个包含三个关键元素的字典:
- input_ids:形状为(B, seq_len)的张量
- attention_mask:形状为(B, seq_len)的张量
- token_embeddings:形状为(B, seq_len, hidden_size)的张量
实现示例
以下是一个在Transformer层后添加线性变换层的实现示例:
import torch.nn as nn
from sentence_transformers import models, SentenceTransformer
# 初始化预训练模型
model_name = "sentence-transformers/stsb-distilbert-base"
word_embedding_model = models.Transformer(model_name)
# 自定义线性变换层
class CustomLinear(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(
in_features=word_embedding_model.get_word_embedding_dimension(),
out_features=512,
)
def forward(self, x):
return {
"input_ids": x["input_ids"],
"attention_mask": x["attention_mask"],
"token_embeddings": self.linear(x["token_embeddings"])
}
# 创建自定义模块实例
custom_module = CustomLinear()
# 配置Pooling层
pooling_model = models.Pooling(
word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False,
)
# 构建完整模型
model = SentenceTransformer(
modules=[word_embedding_model, custom_module, pooling_model]
)
重要注意事项
- 模型微调:添加随机初始化的层会破坏原有嵌入质量,必须进行微调
- 兼容性考虑:自定义层需要正确处理Transformer的输出格式
- 性能影响:添加层会增加计算开销,需权衡模型复杂度与性能需求
扩展应用
开发者可以利用这一特性实现多种创新应用:
- 领域适配:添加特定领域的特征提取层
- 多任务学习:构建共享底层表示的多头结构
- 特征增强:引入注意力机制等高级特征处理层
通过合理设计中间层结构,开发者可以在保持预训练模型强大表征能力的同时,使模型更好地适应特定应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178