ObjectMapper-Realm 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
ObjectMapper-Realm 是一个开源项目,它为 ObjectMapper 提供了一个扩展,使得可以将任意的 JSON 数据序列化到 Realm 的 List 类中。Realm 是一个快速的、可嵌入的 NoSQL 数据库,它提供了对 Swift 和 Objective-C 的支持,可以替代 CoreData 和 SQLite。ObjectMapper 是一个 JSON 和模型转换库,用于在 JSON 和 Swift 对象之间进行映射。本项目主要使用 Swift 语言进行开发。
2. 项目使用的关键技术和框架
本项目使用的主要技术是 ObjectMapper 和 Realm。ObjectMapper 用于处理 JSON 数据和 Swift 对象之间的转换,而 Realm 用于数据存储。ObjectMapper-Realm 的核心是 ListTransform,它是一个自定义的转换器,用于将 JSON 数组转换成 Realm 的 List 类型。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装 ObjectMapper-Realm 之前,请确保您的开发环境满足以下要求:
- Xcode 11.0 或更高版本
- Swift 5.0 或更高版本
- 安装了 CocoaPods 或者 Swift Package Manager
安装步骤
使用 CocoaPods 安装
-
首先,确保您的项目已经集成了 CocoaPods。如果尚未集成,请按照 CocoaPods 的官方指南进行安装。
-
在您的项目根目录下创建一个 Podfile 文件,如果尚未存在的话。
-
打开 Podfile 文件,并添加以下行:
pod 'ObjectMapper+Realm' -
保存 Podfile 文件,并在终端中运行以下命令安装 ObjectMapper-Realm:
pod install -
安装完成后,使用 Xcode 打开
.xcworkspace文件。
使用 Swift Package Manager 安装
-
在您的项目目录中,创建一个新的 Swift Package Manager 项目,如果尚未创建的话。
-
打开您的
Package.swift文件,并在.package的products部分添加以下内容:.library(name: "ObjectMapper+Realm", targets: ["ObjectMapper+Realm"]), -
在
targets部分添加 ObjectMapper-Realm 的目标依赖,如下所示:.target( name: "ObjectMapper+Realm", dependencies: [ .product(name: "ObjectMapper", package: "ObjectMapper"), .product(name: "RealmSwift", package: "Realm") ] ), -
保存
Package.swift文件,并在终端中运行以下命令来更新包依赖:swift package update -
在 Xcode 中,打开您的项目,并确保 ObjectMapper-Realm 的库已经被正确地链接到您的应用中。
完成以上步骤后,您就可以在项目中使用 ObjectMapper-Realm 来进行 JSON 数据的序列化和反序列化了。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00