Async-profiler在JDK 24中的兼容性问题分析与解决方案
Async-profiler作为一款强大的Java性能分析工具,近期在JDK 24早期访问版本中出现了一些兼容性问题。本文将深入分析这一问题的技术背景、产生原因以及解决方案。
问题现象
当用户在JDK 24早期访问版本(包括OpenJDK 24、GraalVM CE 24和Oracle GraalVM 24)上运行async-profiler时,会出现JVM崩溃的情况。崩溃日志显示问题出现在native方法NMethod::isNMethod()
中,随后触发信号处理器中的错误。
从堆栈跟踪中可以观察到,崩溃发生在内存分配过程中,特别是当JVM尝试通过ZGC(Z Garbage Collector)分配新页面时。这表明问题与JVM内部的内存管理机制变化有关。
技术背景分析
JDK 24中对ZGC的实现进行了若干改进,这影响了async-profiler的工作方式。具体来说:
-
ZGC内存管理变更:JDK 24中ZGC的内存分配路径有所调整,这导致async-profiler在采样时无法正确识别某些内存区域。
-
方法元数据处理:
NMethod::isNMethod()
是用于判断一个内存地址是否指向JIT编译后本地方法的函数。JDK 24中相关数据结构的布局发生了变化。 -
信号处理时机:问题发生在内存分配过程中触发性能采样事件时,表明profiler的信号处理器与JVM内存分配路径存在冲突。
解决方案
该问题已在async-profiler的主干分支中得到修复。用户可以通过以下方式解决:
-
使用最新版本的async-profiler,从主干分支构建。
-
对于生产环境,建议暂时继续使用JDK 21等稳定版本,等待JDK 24正式发布后再进行全面测试和升级。
最佳实践建议
-
早期版本测试:在使用JDK早期访问版本时,应充分测试所有依赖工具链的兼容性。
-
性能分析工具更新:保持性能分析工具与JVM版本的同步更新,特别是当JVM有重大变更时。
-
问题诊断:遇到类似崩溃时,应收集完整的崩溃日志和堆栈跟踪,这有助于快速定位问题根源。
总结
JDK 24的内存管理改进虽然带来了性能提升,但也导致了与部分性能分析工具的兼容性问题。async-profiler团队已迅速响应并修复了这一问题,展现了开源社区的快速反应能力。对于开发者而言,这提醒我们在使用新版本JVM时需要关注工具链的兼容性,并及时更新相关工具。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









