在ESM项目中利用结构信息生成蛋白质序列嵌入的方法
概述
ESM(Evolutionary Scale Modeling)是一个强大的蛋白质语言模型,能够从蛋白质序列中提取有意义的嵌入表示。在实际应用中,我们不仅可以使用序列信息,还可以结合蛋白质的三维结构信息来生成更丰富的嵌入表示。本文将详细介绍如何在ESM项目中利用蛋白质结构信息来增强序列嵌入的生成过程。
结构信息的重要性
蛋白质的三维结构包含了比序列更丰富的功能信息。将结构信息整合到嵌入生成过程中,可以显著提高模型对蛋白质功能的理解能力。ESM3模型特别设计为能够同时处理序列和结构信息,这使得它能够生成更准确的蛋白质表示。
实现方法
基本准备工作
首先需要导入必要的模块并加载预训练模型:
import torch
from esm.models.esm3 import ESM3
from esm.sdk.api import ESMProtein, SamplingConfig
from esm.utils.constants.models import ESM3_OPEN_SMALL
from esm.utils.structure.protein_chain import ProteinChain
加载模型
使用ESM3.from_pretrained方法加载预训练的小型模型:
client = ESM3.from_pretrained(ESM3_OPEN_SMALL, device=torch.device("cuda"))
从PDB文件加载结构信息
ESM提供了ProteinChain类来方便地从PDB文件中提取结构信息:
protein_chain = ProteinChain.from_pdb("my_protein.pdb")
创建ESMProtein对象
将ProteinChain转换为ESMProtein对象,这个对象包含了序列和结构信息:
protein = ESMProtein.from_protein_chain(protein_chain)
生成嵌入表示
使用encode方法将蛋白质信息编码为模型可处理的张量,然后通过forward_and_sample方法生成嵌入:
protein_tensor = client.encode(protein)
output = client.forward_and_sample(
protein_tensor, SamplingConfig(return_per_residue_embeddings=True)
获取残基级嵌入
生成的嵌入包含每个残基的表示,可以通过以下方式访问:
print(output.per_residue_embedding.shape)
技术细节
-
结构表示:ESM内部使用atom37格式表示蛋白质结构,这是一种标准的蛋白质原子坐标表示方法。
-
模型处理:ESM3模型能够同时处理序列和结构信息,在编码过程中会自动提取结构特征并与序列特征融合。
-
设备选择:建议使用GPU设备("cuda")来加速计算,特别是对于较大的蛋白质结构。
应用场景
这种结合结构信息的嵌入生成方法特别适用于:
- 蛋白质功能预测
- 蛋白质-蛋白质相互作用研究
- 蛋白质设计
- 突变效应预测
注意事项
-
确保PDB文件的质量和完整性,不完整的结构可能导致嵌入质量下降。
-
对于非常大的蛋白质结构,可能需要调整批次大小或使用更高性能的硬件。
-
不同版本的ESM模型对结构信息的处理能力可能有所不同,建议查阅特定模型的文档。
通过这种方法,研究人员可以充分利用蛋白质的三维结构信息,获得比仅使用序列信息更丰富、更有意义的嵌入表示,从而在各种蛋白质相关任务中获得更好的性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00