PaddleOCR使用TensorRT推理时的内存泄漏问题分析与解决
2025-05-01 06:48:04作者:范垣楠Rhoda
问题背景
在使用PaddleOCR v2.8.1进行文本识别任务时,部分用户报告在使用TensorRT进行推理时会出现内存持续上涨的问题。具体表现为:当启用TensorRT加速(--use_tensorrt=True)时,随着推理过程的进行,系统内存会不断增长,直到耗尽导致程序崩溃;而如果不使用TensorRT,则内存使用保持稳定。
环境配置
出现该问题的典型环境配置如下:
- PaddleOCR版本:v2.8.1
- PaddlePaddle版本:v2.6.1
- TensorRT版本:8.6.1.6
- Python版本:3.10
- 操作系统:Linux
问题复现
用户使用的典型推理命令如下:
python tools/infer/predict_rec.py \
--rec_model_dir=./inference/rec_ppocr_v4/ \
--image_dir="图片路径" \
--rec_algorithm="SVTR_LCNet" \
--rec_image_shape="3, 48, 320" \
--rec_batch_num=1 \
--rec_char_dict_path="./ppocr/utils/en_dict.txt" \
--benchmark=True \
--use_gpu=True \
--use_tensorrt=True \
--warmup=True
排查过程
-
版本对比测试:
- 将PaddlePaddle降级到2.4.2版本后,内存上涨问题消失
- 在PaddlePaddle 2.6.1版本上问题重现
- 初步判断可能是PaddlePaddle版本与TensorRT版本的兼容性问题
-
内存监控:
- 使用memory_profiler工具对内存使用情况进行监控
- 发现内存会在推理初期上涨,但正常情况下应该会稳定在一定水平
- 异常情况下内存会持续上涨不释放
-
模型测试:
- 测试官方提供的预训练模型,同样出现内存上涨问题
- 排除用户自定义模型导致问题的可能性
-
环境因素排查:
- 检查CUDA和cuDNN版本是否匹配
- 验证TensorRT安装是否正确
- 最终确认是特定环境配置导致的问题
解决方案
经过深入排查,确认该问题是由特定环境配置不当引起的。解决方法包括:
-
环境重新配置:
- 确保CUDA、cuDNN和TensorRT版本完全匹配
- 检查PaddlePaddle是否针对当前TensorRT版本进行了编译
-
替代方案:
- 暂时降级PaddlePaddle到2.4.2版本
- 等待官方发布修复版本
-
内存管理优化:
- 在代码中显式调用内存释放方法
- 减少不必要的中间变量保留
最佳实践建议
为了避免类似问题,建议用户:
- 严格按照官方文档推荐的环境配置进行安装
- 在升级PaddlePaddle或TensorRT版本前进行充分测试
- 使用工具监控推理过程中的内存使用情况
- 对于生产环境,建议先在测试环境中验证新版本的稳定性
总结
PaddleOCR在使用TensorRT加速推理时出现的内存泄漏问题,通常与环境配置不当有关。通过仔细检查环境依赖关系、版本兼容性,并采用适当的内存管理策略,可以有效解决此类问题。同时,用户应关注官方发布的最新版本,以获取更好的稳定性和性能优化。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44