PaddleOCR使用TensorRT推理时的内存泄漏问题分析与解决
2025-05-01 22:18:22作者:范垣楠Rhoda
问题背景
在使用PaddleOCR v2.8.1进行文本识别任务时,部分用户报告在使用TensorRT进行推理时会出现内存持续上涨的问题。具体表现为:当启用TensorRT加速(--use_tensorrt=True)时,随着推理过程的进行,系统内存会不断增长,直到耗尽导致程序崩溃;而如果不使用TensorRT,则内存使用保持稳定。
环境配置
出现该问题的典型环境配置如下:
- PaddleOCR版本:v2.8.1
- PaddlePaddle版本:v2.6.1
- TensorRT版本:8.6.1.6
- Python版本:3.10
- 操作系统:Linux
问题复现
用户使用的典型推理命令如下:
python tools/infer/predict_rec.py \
--rec_model_dir=./inference/rec_ppocr_v4/ \
--image_dir="图片路径" \
--rec_algorithm="SVTR_LCNet" \
--rec_image_shape="3, 48, 320" \
--rec_batch_num=1 \
--rec_char_dict_path="./ppocr/utils/en_dict.txt" \
--benchmark=True \
--use_gpu=True \
--use_tensorrt=True \
--warmup=True
排查过程
-
版本对比测试:
- 将PaddlePaddle降级到2.4.2版本后,内存上涨问题消失
- 在PaddlePaddle 2.6.1版本上问题重现
- 初步判断可能是PaddlePaddle版本与TensorRT版本的兼容性问题
-
内存监控:
- 使用memory_profiler工具对内存使用情况进行监控
- 发现内存会在推理初期上涨,但正常情况下应该会稳定在一定水平
- 异常情况下内存会持续上涨不释放
-
模型测试:
- 测试官方提供的预训练模型,同样出现内存上涨问题
- 排除用户自定义模型导致问题的可能性
-
环境因素排查:
- 检查CUDA和cuDNN版本是否匹配
- 验证TensorRT安装是否正确
- 最终确认是特定环境配置导致的问题
解决方案
经过深入排查,确认该问题是由特定环境配置不当引起的。解决方法包括:
-
环境重新配置:
- 确保CUDA、cuDNN和TensorRT版本完全匹配
- 检查PaddlePaddle是否针对当前TensorRT版本进行了编译
-
替代方案:
- 暂时降级PaddlePaddle到2.4.2版本
- 等待官方发布修复版本
-
内存管理优化:
- 在代码中显式调用内存释放方法
- 减少不必要的中间变量保留
最佳实践建议
为了避免类似问题,建议用户:
- 严格按照官方文档推荐的环境配置进行安装
- 在升级PaddlePaddle或TensorRT版本前进行充分测试
- 使用工具监控推理过程中的内存使用情况
- 对于生产环境,建议先在测试环境中验证新版本的稳定性
总结
PaddleOCR在使用TensorRT加速推理时出现的内存泄漏问题,通常与环境配置不当有关。通过仔细检查环境依赖关系、版本兼容性,并采用适当的内存管理策略,可以有效解决此类问题。同时,用户应关注官方发布的最新版本,以获取更好的稳定性和性能优化。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8