PaddleOCR使用TensorRT推理时的内存泄漏问题分析与解决
2025-05-01 02:38:05作者:范垣楠Rhoda
问题背景
在使用PaddleOCR v2.8.1进行文本识别任务时,部分用户报告在使用TensorRT进行推理时会出现内存持续上涨的问题。具体表现为:当启用TensorRT加速(--use_tensorrt=True)时,随着推理过程的进行,系统内存会不断增长,直到耗尽导致程序崩溃;而如果不使用TensorRT,则内存使用保持稳定。
环境配置
出现该问题的典型环境配置如下:
- PaddleOCR版本:v2.8.1
- PaddlePaddle版本:v2.6.1
- TensorRT版本:8.6.1.6
- Python版本:3.10
- 操作系统:Linux
问题复现
用户使用的典型推理命令如下:
python tools/infer/predict_rec.py \
--rec_model_dir=./inference/rec_ppocr_v4/ \
--image_dir="图片路径" \
--rec_algorithm="SVTR_LCNet" \
--rec_image_shape="3, 48, 320" \
--rec_batch_num=1 \
--rec_char_dict_path="./ppocr/utils/en_dict.txt" \
--benchmark=True \
--use_gpu=True \
--use_tensorrt=True \
--warmup=True
排查过程
-
版本对比测试:
- 将PaddlePaddle降级到2.4.2版本后,内存上涨问题消失
- 在PaddlePaddle 2.6.1版本上问题重现
- 初步判断可能是PaddlePaddle版本与TensorRT版本的兼容性问题
-
内存监控:
- 使用memory_profiler工具对内存使用情况进行监控
- 发现内存会在推理初期上涨,但正常情况下应该会稳定在一定水平
- 异常情况下内存会持续上涨不释放
-
模型测试:
- 测试官方提供的预训练模型,同样出现内存上涨问题
- 排除用户自定义模型导致问题的可能性
-
环境因素排查:
- 检查CUDA和cuDNN版本是否匹配
- 验证TensorRT安装是否正确
- 最终确认是特定环境配置导致的问题
解决方案
经过深入排查,确认该问题是由特定环境配置不当引起的。解决方法包括:
-
环境重新配置:
- 确保CUDA、cuDNN和TensorRT版本完全匹配
- 检查PaddlePaddle是否针对当前TensorRT版本进行了编译
-
替代方案:
- 暂时降级PaddlePaddle到2.4.2版本
- 等待官方发布修复版本
-
内存管理优化:
- 在代码中显式调用内存释放方法
- 减少不必要的中间变量保留
最佳实践建议
为了避免类似问题,建议用户:
- 严格按照官方文档推荐的环境配置进行安装
- 在升级PaddlePaddle或TensorRT版本前进行充分测试
- 使用工具监控推理过程中的内存使用情况
- 对于生产环境,建议先在测试环境中验证新版本的稳定性
总结
PaddleOCR在使用TensorRT加速推理时出现的内存泄漏问题,通常与环境配置不当有关。通过仔细检查环境依赖关系、版本兼容性,并采用适当的内存管理策略,可以有效解决此类问题。同时,用户应关注官方发布的最新版本,以获取更好的稳定性和性能优化。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5