Keras模型序列化与自定义损失函数加载问题解析
2025-04-30 18:51:15作者:裴麒琰
问题背景
在Keras深度学习框架中,模型序列化与反序列化是模型部署和迁移的重要环节。近期在Keras版本从3.6升级到3.7后,部分用户遇到了自定义损失函数加载失败的问题,具体表现为当尝试加载在Keras 3.6中保存的模型时,系统无法识别已注册的自定义损失函数。
问题现象
当使用Keras 3.7或3.8加载在Keras 3.6中保存的包含自定义损失函数的模型时,会出现类似以下的错误信息:
TypeError: Could not locate function 'attention_loss'. Make sure custom classes are decorated with `@keras.saving.register_keras_serializable()`. Full object config: {'module': 'builtins', 'class_name': 'function', 'config': 'attention_loss', 'registered_name': 'function'}
值得注意的是,这个问题仅出现在自定义损失函数上,而自定义激活函数则不受影响。
技术分析
序列化机制变化
在Keras 3.6版本中,自定义损失函数的序列化存在以下特点:
- 序列化时仅使用函数名称作为键值,忽略了
@keras.saving.register_keras_serializable装饰器中指定的包名 - 反序列化时存在回退机制,能够通过函数名称匹配已注册的函数
Keras 3.7版本通过提交795df4ef63566ec869fe2512373f4346e1e02746修复了这个问题,但同时也移除了原有的回退机制,导致:
- 现在序列化时会正确使用"包名>函数名"的完整格式
- 但无法加载旧版本中仅以函数名作为键值保存的模型
根本原因
问题的核心在于Keras对不同类型的自定义函数处理方式不一致:
- 损失函数:在3.6版本中序列化时未包含包名信息
- 激活函数:始终使用
get_registered_name方法生成包含包名的完整键值
这种不一致性导致了版本升级后的兼容性问题。
解决方案
临时解决方案
对于需要加载Keras 3.6保存的模型的用户,可以采用以下方法:
@keras.saving.register_keras_serializable("attention_loss")
def attention_loss(y_actual, y_predicted):
# 实现代码
reloaded_model = keras.models.load_model(
"custom_model.keras",
custom_objects={"attention_loss": attention_loss},
)
这种方法通过显式提供custom_objects参数,绕过了自动反序列化机制。
长期建议
- 对于新项目,建议统一使用Keras 3.7+版本
- 保存模型时,确保所有自定义对象都正确使用了
@keras.saving.register_keras_serializable装饰器 - 考虑在模型文档中保留自定义对象的实现代码,以备将来需要
最佳实践
为了确保模型的可移植性,建议遵循以下准则:
- 明确注册:为所有自定义层、损失函数和指标使用装饰器注册
- 版本控制:记录模型保存时使用的Keras版本
- 代码归档:将自定义对象的实现与模型文件一起归档
- 测试验证:在不同环境中测试模型加载功能
总结
Keras框架的持续改进虽然带来了更好的功能,但有时也会引入兼容性问题。理解序列化机制的变化有助于开发者更好地管理模型生命周期。对于自定义对象,显式注册和适当文档是确保长期可维护性的关键。随着Keras生态系统的成熟,这类问题有望通过更完善的版本管理和迁移工具得到进一步缓解。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443