Keras模型序列化与自定义损失函数加载问题解析
2025-04-30 04:15:49作者:裴麒琰
问题背景
在Keras深度学习框架中,模型序列化与反序列化是模型部署和迁移的重要环节。近期在Keras版本从3.6升级到3.7后,部分用户遇到了自定义损失函数加载失败的问题,具体表现为当尝试加载在Keras 3.6中保存的模型时,系统无法识别已注册的自定义损失函数。
问题现象
当使用Keras 3.7或3.8加载在Keras 3.6中保存的包含自定义损失函数的模型时,会出现类似以下的错误信息:
TypeError: Could not locate function 'attention_loss'. Make sure custom classes are decorated with `@keras.saving.register_keras_serializable()`. Full object config: {'module': 'builtins', 'class_name': 'function', 'config': 'attention_loss', 'registered_name': 'function'}
值得注意的是,这个问题仅出现在自定义损失函数上,而自定义激活函数则不受影响。
技术分析
序列化机制变化
在Keras 3.6版本中,自定义损失函数的序列化存在以下特点:
- 序列化时仅使用函数名称作为键值,忽略了
@keras.saving.register_keras_serializable装饰器中指定的包名 - 反序列化时存在回退机制,能够通过函数名称匹配已注册的函数
Keras 3.7版本通过提交795df4ef63566ec869fe2512373f4346e1e02746修复了这个问题,但同时也移除了原有的回退机制,导致:
- 现在序列化时会正确使用"包名>函数名"的完整格式
- 但无法加载旧版本中仅以函数名作为键值保存的模型
根本原因
问题的核心在于Keras对不同类型的自定义函数处理方式不一致:
- 损失函数:在3.6版本中序列化时未包含包名信息
- 激活函数:始终使用
get_registered_name方法生成包含包名的完整键值
这种不一致性导致了版本升级后的兼容性问题。
解决方案
临时解决方案
对于需要加载Keras 3.6保存的模型的用户,可以采用以下方法:
@keras.saving.register_keras_serializable("attention_loss")
def attention_loss(y_actual, y_predicted):
# 实现代码
reloaded_model = keras.models.load_model(
"custom_model.keras",
custom_objects={"attention_loss": attention_loss},
)
这种方法通过显式提供custom_objects参数,绕过了自动反序列化机制。
长期建议
- 对于新项目,建议统一使用Keras 3.7+版本
- 保存模型时,确保所有自定义对象都正确使用了
@keras.saving.register_keras_serializable装饰器 - 考虑在模型文档中保留自定义对象的实现代码,以备将来需要
最佳实践
为了确保模型的可移植性,建议遵循以下准则:
- 明确注册:为所有自定义层、损失函数和指标使用装饰器注册
- 版本控制:记录模型保存时使用的Keras版本
- 代码归档:将自定义对象的实现与模型文件一起归档
- 测试验证:在不同环境中测试模型加载功能
总结
Keras框架的持续改进虽然带来了更好的功能,但有时也会引入兼容性问题。理解序列化机制的变化有助于开发者更好地管理模型生命周期。对于自定义对象,显式注册和适当文档是确保长期可维护性的关键。随着Keras生态系统的成熟,这类问题有望通过更完善的版本管理和迁移工具得到进一步缓解。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
455
3.39 K
Ascend Extension for PyTorch
Python
258
291
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
173
63
暂无简介
Dart
707
168
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
835
411
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
React Native鸿蒙化仓库
JavaScript
282
331
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
393
131
openGauss kernel ~ openGauss is an open source relational database management system
C++
164
222