JVector项目中的SIMD优化实践:重新启用assembleAndSum与实现余弦解码加速
在JVector这个高性能向量搜索库中,开发团队最近针对SIMD指令集优化进行了两项重要改进:重新启用之前因JDK bug而禁用的assembleAndSum功能,以及为余弦相似度计算实现基于Panama/Native的向量加速。
背景与问题
在早期的开发过程中,团队发现JDK中存在一个影响向量运算的bug(JDK-8321215),这导致他们不得不临时禁用了SimdOps.assembleAndSum功能。这个功能原本负责高效地将乘积量化(PQ)向量转换为索引并进行求和运算,是性能关键路径上的重要优化。
与此同时,余弦相似度计算作为向量搜索中的核心操作,其性能直接影响查询响应时间。传统的实现方式未能充分利用现代CPU的向量指令集,存在优化空间。
技术实现
assembleAndSum功能的重启
随着JDK bug的修复,团队重新测试了这一优化在基准测试中的表现。初步测试数据显示,在AVX-512指令集支持下,这一优化能为查询性能带来5-10%的提升。这种优化主要通过对索引的并行转换和片段求和的并行处理来实现。
余弦解码的向量加速
针对余弦相似度计算,团队开发了专门的Panama实现。从结构上看,余弦解码与之前的点积运算类似,都需要将PQ向量转换为索引。不同之处在于,余弦解码还需要查询一个查找表,以获取编码向量的部分和与部分幅值。
这种优化避免了传统实现中的顺序处理瓶颈,通过以下方式提升性能:
- 并行处理索引转换
- 向量化查询查找表
- 并行计算部分和与幅值
性能影响
在实际基准测试中,这两项优化共同作用,为典型的向量搜索场景带来了显著的性能提升。特别是在处理高维向量和大规模数据集时,这些底层优化能够有效减少CPU指令数量,提高指令级并行度,从而缩短查询延迟。
值得注意的是,虽然理论上并行gather操作可以带来额外收益,但实际测试表明内存访问仍然是主要瓶颈,因此这部分优化的收益相对有限。
未来方向
团队将继续探索以下优化方向:
- 针对不同CPU架构(如ARM NEON)的特定优化
- 更精细的向量化策略,减少内存访问开销
- 自适应优化策略,根据运行时CPU特性选择最佳实现
这些优化不仅提升了JVector在当前硬件上的性能,也为未来利用更先进的向量指令集打下了良好基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00