LightGBM中实现标签平滑(Label Smoothing)的技术方案
2025-05-13 05:31:26作者:殷蕙予
在机器学习分类任务中,标签平滑(Label Smoothing)是一种常用的正则化技术,它通过软化原始标签来防止模型对训练数据过度自信。本文将详细介绍如何在LightGBM这一高效梯度提升框架中实现标签平滑技术。
标签平滑原理
标签平滑的核心思想是将原始的硬标签(hard label)转换为软标签(soft label)。对于二分类问题,传统标签是0或1的二元值,而经过平滑处理后:
- 原始标签1会被调整为略小于1的值(如0.9)
- 原始标签0会被调整为略大于0的值(如0.1)
这种调整通过引入少量噪声,可以防止模型对预测结果过于自信,提高模型的泛化能力。数学表达式为:
y_smoothed = (1 - α) * y + α / K
其中α是平滑系数(通常0.1-0.2),K是类别数(二分类时K=2)。
LightGBM中的实现要点
在LightGBM中实现标签平滑需要注意以下关键点:
-
目标函数选择:不能使用标准的binary objective(二元目标函数),因为它只接受0/1的硬标签。需要改用
cross_entropy(交叉熵)目标函数,该函数可以处理[0,1]区间内的连续标签值。 -
参数设置:在训练时需明确指定:
objective = 'cross_entropy' -
标签预处理:在输入模型前需要对原始标签进行平滑处理。例如使用0.2的平滑系数:
label_smoothing = 0.2 y_train = (1 - label_smoothing) * y_train + label_smoothing / 2
实际应用建议
-
平滑系数α通常设置在0.1到0.3之间,需要根据具体任务通过验证集进行调整。
-
对于多分类问题,同样可以采用此方法,只需调整K为类别总数。
-
标签平滑特别适用于以下场景:
- 训练数据存在标签噪声
- 模型表现出过度自信的预测
- 需要提高模型泛化能力
-
可以与其他正则化技术如早停(early stopping)、特征采样(feature fraction)等结合使用。
总结
在LightGBM中通过交叉熵目标函数实现标签平滑是一种简单有效的正则化方法。这种方法通过软化标签,能够有效防止模型过拟合,提高在测试集上的表现。实际应用中需要根据任务特点调整平滑系数,并结合其他正则化技术以获得最佳效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219