Cheshire Cat AI 核心库中的OpenAI兼容端点参数兼容性问题分析
在Cheshire Cat AI核心项目的最新版本中,用户报告了一个与OpenAI兼容端点相关的参数传递问题。当使用自定义的OpenAI兼容端点(如ooba、llama-cpp或candle等)时,系统会抛出"Completions.create() got an unexpected keyword argument 'repeat_penalty'"错误。
问题背景
该问题源于OpenAI Python库v1版本的更新,其中移除了对某些参数的支持。具体来说,repeat_penalty参数在新的API版本中不再被接受,这导致了与Cheshire Cat AI核心库中自定义LLM工厂实现的兼容性问题。
技术细节
在当前的实现中,Cheshire Cat AI的custom_llm.py文件中定义了一个OpenAI兼容客户端,该客户端尝试传递多个参数给后端服务,包括:
- repeat_penalty
- top_k
- 以及其他模型控制参数
然而,随着OpenAI官方库的更新,这些参数不再被支持,导致API调用失败。错误堆栈显示,问题发生在LangChain的LLM包装器尝试创建补全请求时。
解决方案讨论
项目维护团队提出了几种可能的解决方案:
-
最小化参数集方案:仅保留最基本的参数,如:
- base_url
- temperature
- model_name
- api_key 这种方案能确保最大兼容性,但会牺牲对模型行为的精细控制。
-
插件化方案:通过factory_allowed_llms钩子实现特定服务的集成插件。当某个集成插件有足够多的用户时,再考虑将其合并到核心库中。
-
参数标准化方案:调研主流提供商(TogetherAI、OpenRouters等)支持的参数,找出共有的参数子集作为标准实现。
最佳实践建议
对于开发者而言,目前推荐的解决方案是:
- 对于通用场景,使用最小参数集的OpenAI兼容客户端
- 对于需要特定参数控制的场景,开发专用插件
- 关注社区贡献的流行集成方案,如OpenRouters或text-generation-webui的专用客户端
未来方向
项目团队计划在未来的版本中重构这部分代码,提供更灵活的LLM集成方案。核心库将提供最基本的兼容性支持,而将高级功能和特定提供商的优化实现留给插件系统处理。这种架构既能保证核心的稳定性,又能通过社区扩展满足各种特殊需求。
对于开源社区成员,建议关注项目的Discord频道以获取最新进展,并欢迎贡献特定服务的集成插件。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00