Cheshire Cat AI 核心库中的OpenAI兼容端点参数兼容性问题分析
在Cheshire Cat AI核心项目的最新版本中,用户报告了一个与OpenAI兼容端点相关的参数传递问题。当使用自定义的OpenAI兼容端点(如ooba、llama-cpp或candle等)时,系统会抛出"Completions.create() got an unexpected keyword argument 'repeat_penalty'"错误。
问题背景
该问题源于OpenAI Python库v1版本的更新,其中移除了对某些参数的支持。具体来说,repeat_penalty参数在新的API版本中不再被接受,这导致了与Cheshire Cat AI核心库中自定义LLM工厂实现的兼容性问题。
技术细节
在当前的实现中,Cheshire Cat AI的custom_llm.py文件中定义了一个OpenAI兼容客户端,该客户端尝试传递多个参数给后端服务,包括:
- repeat_penalty
- top_k
- 以及其他模型控制参数
然而,随着OpenAI官方库的更新,这些参数不再被支持,导致API调用失败。错误堆栈显示,问题发生在LangChain的LLM包装器尝试创建补全请求时。
解决方案讨论
项目维护团队提出了几种可能的解决方案:
-
最小化参数集方案:仅保留最基本的参数,如:
- base_url
- temperature
- model_name
- api_key 这种方案能确保最大兼容性,但会牺牲对模型行为的精细控制。
-
插件化方案:通过factory_allowed_llms钩子实现特定服务的集成插件。当某个集成插件有足够多的用户时,再考虑将其合并到核心库中。
-
参数标准化方案:调研主流提供商(TogetherAI、OpenRouters等)支持的参数,找出共有的参数子集作为标准实现。
最佳实践建议
对于开发者而言,目前推荐的解决方案是:
- 对于通用场景,使用最小参数集的OpenAI兼容客户端
- 对于需要特定参数控制的场景,开发专用插件
- 关注社区贡献的流行集成方案,如OpenRouters或text-generation-webui的专用客户端
未来方向
项目团队计划在未来的版本中重构这部分代码,提供更灵活的LLM集成方案。核心库将提供最基本的兼容性支持,而将高级功能和特定提供商的优化实现留给插件系统处理。这种架构既能保证核心的稳定性,又能通过社区扩展满足各种特殊需求。
对于开源社区成员,建议关注项目的Discord频道以获取最新进展,并欢迎贡献特定服务的集成插件。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00