Jetty项目中的HTTP/2直接内存缓冲区管理问题解析
问题背景
在Jetty 12.0.16版本中,当使用特定HTTP/2客户端(如Mittens工具)进行高并发请求时,会出现直接内存缓冲区(Direct Buffer)无法正确释放的问题。这个问题最终会导致容器因内存不足(OOM)而被终止。
技术细节分析
直接内存缓冲区机制
Jetty使用直接内存缓冲区来处理网络I/O操作,这种设计可以减少数据在内核空间和用户空间之间的拷贝次数,提高性能。Jetty通过ByteBufferPool来管理这些缓冲区,默认使用ArrayByteBufferPool实现。
问题根源
问题的核心在于HTTP/2协议中的SETTINGS_MAX_HEADER_LIST_SIZE设置。当客户端(如Mittens)发送一个非常大的值(如10MB)时:
- Jetty会根据这个值创建相应大小的缓冲区
- 默认的ArrayByteBufferPool只缓存最大64KB的缓冲区
- 对于更大的缓冲区,Jetty会直接分配但不缓存
- 这些大缓冲区无法被重用,导致直接内存持续增长
问题复现条件
该问题在以下条件下容易出现:
- 使用支持HTTP/2的客户端(如Mittens或curl的--http2-prior-knowledge模式)
- 客户端设置了很大的SETTINGS_MAX_HEADER_LIST_SIZE值
- 使用ZGC垃圾收集器时问题更加明显
- 高并发请求场景
解决方案
Jetty项目组通过以下方式解决了这个问题:
-
限制SETTINGS_MAX_HEADER_LIST_SIZE:在12.0.17版本中,Jetty现在会使用服务器端配置的值来限制客户端设置的最大头部列表大小,防止客户端设置过大值。
-
改进缓冲区池管理:增加了对超出池大小缓冲区的跟踪机制,便于问题诊断。
-
配置建议:
- 对于需要处理大头部的情况,可以配置更大的ArrayByteBufferPool
- 使用ArrayByteBufferPool.Quadratic实现并设置足够大的最大池大小
- 在特殊场景下可以考虑禁用直接内存缓冲区
最佳实践
-
合理配置缓冲区池:根据应用实际情况配置适当大小的缓冲区池,既要考虑性能也要考虑内存使用。
-
监控直接内存使用:在Java应用中,除了堆内存外,还需要监控直接内存的使用情况。
-
客户端配置审查:检查HTTP/2客户端的默认配置,特别是头部大小限制等参数。
-
版本升级:及时升级到已修复该问题的Jetty版本(12.0.17及以上)。
技术启示
这个案例展示了协议实现中边界条件处理的重要性。HTTP/2虽然带来了性能提升,但也引入了新的复杂性。服务器实现需要:
- 对客户端提供的参数进行合理限制
- 对资源使用进行有效管理
- 提供足够的监控和诊断手段
通过这个问题的分析和解决,Jetty在HTTP/2协议实现上变得更加健壮,能够更好地处理各种客户端行为,保证服务器的稳定运行。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









