Apache Log4j2性能回归问题分析与修复:异常堆栈渲染优化
在Apache Log4j2从2.24.1版本升级到2.25.0-SNAPSHOT的过程中,开发团队发现了一个严重的性能退化问题——异常堆栈渲染性能下降了约60%。这个问题引起了核心团队的重视,并最终定位到ThrowablePatternConverter的实现上。
问题背景
异常日志是日志系统中常见的功能需求,但2.25.0-SNAPSHOT版本在处理异常堆栈时出现了明显的性能下降。经过基准测试对比,新版本不仅执行速度变慢,还产生了大量不必要的对象分配。
性能分析
通过详细的性能剖析,团队发现问题的根源在于ThrowableExtendedStackTraceRenderer.createClassResourceInfoByName()方法。这个方法在新版本中做了以下高成本操作:
- 为每个堆栈帧创建ClassResourceInfo对象
- 在每个ClassResourceInfo构造过程中使用了String.format()方法
- 创建了HashSet和ArrayDeque等临时集合
这些操作导致了大量的对象分配和字符串格式化开销,特别是在频繁记录异常的场景下,这些开销会被显著放大。
技术细节
在2.24.1版本中,ExtendedThrowablePatternConverter采用了更高效的实现方式,几乎不产生额外对象分配。而2.25.0版本的ThrowablePatternConverter为了提供更丰富的异常信息(如模块/包信息),引入了这些高开销操作。
特别值得注意的是String.format()的使用——这个方法虽然方便,但在性能敏感的场景下代价很高。当需要处理大量堆栈帧时,这些微小开销会被累积放大。
解决方案
开发团队通过以下优化措施解决了这个问题:
- 移除了不必要的String.format()调用,改用更高效的字符串拼接方式
- 优化了ClassResourceInfo的创建逻辑,减少对象分配
- 简化了集合操作,降低内存开销
这些优化显著降低了异常渲染路径上的CPU和内存开销,使性能恢复到2.24.1版本的水平。
经验总结
这个案例为日志系统开发提供了宝贵经验:
- 性能敏感路径上的便利方法(如String.format)需要谨慎使用
- 新功能的引入必须进行充分的性能评估
- 对象分配在频繁执行的代码路径上会产生累积效应
- 基准测试应该成为发布流程的必需环节
对于使用Log4j2的开发人员,如果遇到异常日志性能问题,可以考虑:
- 评估是否真的需要完整的异常堆栈信息
- 在高频日志场景下考虑使用简化版异常格式
- 定期更新到最新稳定版本以获取性能改进
这个问题的及时修复确保了Log4j2 2.25.0正式版的发布质量,维护了其作为高性能日志框架的声誉。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0137AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









