Concrete ML v1.9.0发布:树模型加密推理与LoRA大模型微调新突破
项目简介
Concrete ML是Zama AI推出的开源隐私保护机器学习框架,它基于全同态加密(FHE)技术,允许数据科学家在不暴露原始数据的情况下运行机器学习模型。该框架与流行的scikit-learn API兼容,支持从标准机器学习模型到加密推理管道的转换。
版本亮点
树模型与TFHE-rs的互操作性
v1.9.0版本最显著的改进是为基于树的分类器(如随机森林、XGBoost等)添加了对TFHE-rs密文格式的支持。这一特性带来了两个关键优势:
-
开发模式互操作性:开发者现在可以在Python环境中直接使用TFHE-rs格式的密文作为树模型的输入和输出,简化了加密数据处理流程。
-
客户端/服务器部署:新版本支持构建完整的客户端-服务器架构,其中客户端可以使用TFHE-rs加密数据,服务器端运行Concrete ML编译的加密树模型进行推理。这种架构特别适合需要保护用户隐私的认证系统等场景。
技术实现上,该功能通过扩展树模型的序列化接口,使其能够识别和处理TFHE-rs的特殊密文结构,同时保持与原有FHE电路的无缝集成。
LoRA大模型加密微调增强
在大型语言模型(LLM)领域,v1.9.0进一步丰富了LoRA(Low-Rank Adaptation)微调的功能:
-
完整训练流水线:新增了基于LLaMA-1B模型在数学数据集上的完整微调示例,展示了从数据准备到模型评估的全过程。
-
GPU加密训练:演示了如何在GPU环境下运行加密的微调流程,这对实际应用中的性能优化至关重要。
-
训练监控增强:加入了更详细的训练日志和评估指标,帮助开发者更好地理解和优化模型性能。
技术细节与优化
加密树模型的工程改进
新版本中对树模型的加密实现进行了多项底层优化:
- 密文处理效率提升,减少了内存占用
- 改进了决策路径的加密计算方式
- 增强了模型输出的后处理能力
稳定性修复
v1.9.0还包含多个稳定性修复:
- 改进了编译器的执行器设置逻辑
- 修复了版本发布流程中的问题
- 标记了不稳定的测试用例以便后续优化
应用前景
Concrete ML v1.9.0的这些增强功能为隐私保护机器学习开辟了新的应用场景:
- 金融风控:银行可以使用加密树模型处理客户数据,同时满足合规要求
- 医疗诊断:医院可以安全地共享加密的医疗数据用于模型推理
- 智能客服:保护用户对话隐私的同时提供个性化服务
总结
Concrete ML v1.9.0通过增强树模型的加密能力和扩展LLM微调功能,进一步降低了隐私保护机器学习的应用门槛。这些改进不仅提升了框架的实用性,也为开发者提供了更多构建安全AI系统的可能性。随着FHE技术的不断成熟,Concrete ML正成为连接传统机器学习与隐私计算的重要桥梁。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









