PocketFlow-Typescript 项目中的 Agentic Coding 实践指南
2025-06-19 13:43:52作者:蔡怀权
前言
在现代软件开发中,人工智能辅助编程正逐渐成为一种主流趋势。PocketFlow-Typescript 项目提出了一种创新的"Agentic Coding"(代理式编码)方法论,将人类系统设计与AI实现完美结合。本文将深入解析这一方法论的核心思想与实践步骤。
什么是 Agentic Coding?
Agentic Coding 是一种人机协作的编程范式,其核心理念是"人类设计,AI编码"。在这种模式下,人类开发者负责高层次的设计决策和需求分析,而AI则承担具体的实现工作。这种分工充分发挥了人类在抽象思维和系统设计方面的优势,同时利用了AI在代码生成和细节实现上的高效性。
七步实施流程
第一步:需求分析(人类主导)
在项目启动阶段,人类开发者需要:
- 明确项目需求和应用场景
- 评估AI系统的适用性:
- AI擅长领域:常规性任务(表单填写、邮件回复)、创意性但输入明确的任务(制作幻灯片、编写SQL)
- AI不擅长领域:需要复杂决策的模糊问题(商业策略、创业规划)
- 保持用户中心视角:从用户角度描述问题,而非简单罗列功能
- 平衡复杂度与价值:优先实现高价值低复杂度的功能
第二步:流程设计(人机协作)
在设计阶段,开发者需要:
- 选择合适的架构模式:
- Map Reduce:明确拆分和合并策略
- Agent:定义输入上下文和可能动作
- RAG:指定嵌入内容,区分离线和在线工作流
- 绘制流程图(推荐使用Mermaid语法)
- 关键原则:如果人类无法明确流程,AI也无法自动化实现
第三步:工具函数开发(人机协作)
工具函数是AI系统与外界交互的桥梁,包括:
- 输入类:获取Slack消息、读取邮件等
- 输出类:生成报告、发送邮件等
- 工具类:调用LLM、网络搜索等
- 实现建议:
- 每个工具函数单独文件
- 明确输入输出类型
- 编写简单测试用例
- 文档化说明必要性
第四步:节点设计(AI主导)
节点是流程的基本单元,设计要点:
- 共享存储设计:
- 简单系统:内存对象
- 复杂系统:数据库
- 避免重复:使用引用或外键
- 节点规范:
- 类型:Node/BatchNode/ParallelBatchNode
- 准备阶段:从共享存储读取数据
- 执行阶段:调用工具函数
- 后处理:将结果写入共享存储
第五步:实现(AI主导)
进入编码阶段后,AI应:
- 保持代码简单直接
- 快速失败机制:避免过多try-catch
- 全面日志记录:便于调试
- 渐进式开发:先实现核心功能
第六步:优化(人机协作)
优化阶段策略:
- 宏观优化:
- 任务进一步拆分
- 引入代理决策
- 优化输入上下文管理
- 微观优化:
- 提示工程:清晰具体的指令
- 上下文学习:提供优质示例
- 预期多次迭代
第七步:可靠性(AI主导)
确保系统稳定:
- 节点重试机制
- 全面的日志和可视化
- 自评估节点:LLM审核不确定结果
项目结构最佳实践
典型的PocketFlow-Typescript项目结构:
my-project/
├── src/
│ ├── index.ts # 入口文件
│ ├── nodes.ts # 节点定义
│ ├── flow.ts # 流程组装
│ ├── types.ts # 类型定义
│ └── utils/ # 工具函数
├── docs/
│ └── design.md # 高层设计文档
├── package.json # 项目配置
└── tsconfig.json # TypeScript配置
核心实现示例
- 类型定义(types.ts):
export interface QASharedStore {
question?: string;
answer?: string;
}
- 节点实现(nodes.ts):
export class AnswerNode extends Node<QASharedStore> {
async prep(shared: QASharedStore): Promise<string> {
return shared.question || "";
}
async exec(question: string): Promise<string> {
return await callLlm(question);
}
async post(shared: QASharedStore, _: unknown, execRes: string) {
shared.answer = execRes;
return undefined;
}
}
- 流程组装(flow.ts):
export function createQaFlow(): Flow {
const getQuestionNode = new GetQuestionNode();
const answerNode = new AnswerNode();
getQuestionNode.next(answerNode);
return new Flow<QASharedStore>(getQuestionNode);
}
- 入口文件(index.ts):
async function main() {
const shared: QASharedStore = {};
const qaFlow = createQaFlow();
await qaFlow.run(shared);
console.log(`Answer: ${shared.answer}`);
}
结语
PocketFlow-Typescript 的 Agentic Coding 方法论为人机协作编程提供了系统化的实践框架。通过明确的分工和清晰的流程,开发者可以充分发挥AI的编码能力,同时保持对系统设计的全面掌控。记住,成功的AI辅助开发始于清晰的设计,成于持续的迭代优化。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26