PocketFlow-Typescript 项目中的 Agentic Coding 实践指南
2025-06-19 18:12:05作者:蔡怀权
前言
在现代软件开发中,人工智能辅助编程正逐渐成为一种主流趋势。PocketFlow-Typescript 项目提出了一种创新的"Agentic Coding"(代理式编码)方法论,将人类系统设计与AI实现完美结合。本文将深入解析这一方法论的核心思想与实践步骤。
什么是 Agentic Coding?
Agentic Coding 是一种人机协作的编程范式,其核心理念是"人类设计,AI编码"。在这种模式下,人类开发者负责高层次的设计决策和需求分析,而AI则承担具体的实现工作。这种分工充分发挥了人类在抽象思维和系统设计方面的优势,同时利用了AI在代码生成和细节实现上的高效性。
七步实施流程
第一步:需求分析(人类主导)
在项目启动阶段,人类开发者需要:
- 明确项目需求和应用场景
- 评估AI系统的适用性:
- AI擅长领域:常规性任务(表单填写、邮件回复)、创意性但输入明确的任务(制作幻灯片、编写SQL)
- AI不擅长领域:需要复杂决策的模糊问题(商业策略、创业规划)
- 保持用户中心视角:从用户角度描述问题,而非简单罗列功能
- 平衡复杂度与价值:优先实现高价值低复杂度的功能
第二步:流程设计(人机协作)
在设计阶段,开发者需要:
- 选择合适的架构模式:
- Map Reduce:明确拆分和合并策略
- Agent:定义输入上下文和可能动作
- RAG:指定嵌入内容,区分离线和在线工作流
- 绘制流程图(推荐使用Mermaid语法)
- 关键原则:如果人类无法明确流程,AI也无法自动化实现
第三步:工具函数开发(人机协作)
工具函数是AI系统与外界交互的桥梁,包括:
- 输入类:获取Slack消息、读取邮件等
- 输出类:生成报告、发送邮件等
- 工具类:调用LLM、网络搜索等
- 实现建议:
- 每个工具函数单独文件
- 明确输入输出类型
- 编写简单测试用例
- 文档化说明必要性
第四步:节点设计(AI主导)
节点是流程的基本单元,设计要点:
- 共享存储设计:
- 简单系统:内存对象
- 复杂系统:数据库
- 避免重复:使用引用或外键
- 节点规范:
- 类型:Node/BatchNode/ParallelBatchNode
- 准备阶段:从共享存储读取数据
- 执行阶段:调用工具函数
- 后处理:将结果写入共享存储
第五步:实现(AI主导)
进入编码阶段后,AI应:
- 保持代码简单直接
- 快速失败机制:避免过多try-catch
- 全面日志记录:便于调试
- 渐进式开发:先实现核心功能
第六步:优化(人机协作)
优化阶段策略:
- 宏观优化:
- 任务进一步拆分
- 引入代理决策
- 优化输入上下文管理
- 微观优化:
- 提示工程:清晰具体的指令
- 上下文学习:提供优质示例
- 预期多次迭代
第七步:可靠性(AI主导)
确保系统稳定:
- 节点重试机制
- 全面的日志和可视化
- 自评估节点:LLM审核不确定结果
项目结构最佳实践
典型的PocketFlow-Typescript项目结构:
my-project/
├── src/
│ ├── index.ts # 入口文件
│ ├── nodes.ts # 节点定义
│ ├── flow.ts # 流程组装
│ ├── types.ts # 类型定义
│ └── utils/ # 工具函数
├── docs/
│ └── design.md # 高层设计文档
├── package.json # 项目配置
└── tsconfig.json # TypeScript配置
核心实现示例
- 类型定义(types.ts):
export interface QASharedStore {
question?: string;
answer?: string;
}
- 节点实现(nodes.ts):
export class AnswerNode extends Node<QASharedStore> {
async prep(shared: QASharedStore): Promise<string> {
return shared.question || "";
}
async exec(question: string): Promise<string> {
return await callLlm(question);
}
async post(shared: QASharedStore, _: unknown, execRes: string) {
shared.answer = execRes;
return undefined;
}
}
- 流程组装(flow.ts):
export function createQaFlow(): Flow {
const getQuestionNode = new GetQuestionNode();
const answerNode = new AnswerNode();
getQuestionNode.next(answerNode);
return new Flow<QASharedStore>(getQuestionNode);
}
- 入口文件(index.ts):
async function main() {
const shared: QASharedStore = {};
const qaFlow = createQaFlow();
await qaFlow.run(shared);
console.log(`Answer: ${shared.answer}`);
}
结语
PocketFlow-Typescript 的 Agentic Coding 方法论为人机协作编程提供了系统化的实践框架。通过明确的分工和清晰的流程,开发者可以充分发挥AI的编码能力,同时保持对系统设计的全面掌控。记住,成功的AI辅助开发始于清晰的设计,成于持续的迭代优化。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896