BoundaryML项目中Google搜索增强功能的实现方案
2025-06-25 20:55:33作者:乔或婵
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
在BoundaryML项目中实现Google搜索增强功能(Grounding)是一个值得探讨的技术话题。这种功能允许模型在执行查询时自动调用Google搜索API获取最新信息,为回答提供实时数据支持。
技术背景
Google搜索增强功能是Gemini API提供的一项重要特性,它通过在请求中添加特定参数来启用。传统的实现方式是在API调用时添加"tools"字段,其中包含"google_search"配置项。这种方式与常见的"Tool Calling"模式不同,它属于LLM增强技术范畴,而非结构化输出技术。
实现方案比较
直接配置法
最直接的实现方式是在创建客户端时传递tools参数。这种方法简单直接,但需要注意不同语言客户端的兼容性问题。例如在Rust环境中,由于BoundaryML使用了REST服务器架构,可能需要特殊处理。
客户端封装方案
可以通过创建封装函数来统一管理启用搜索增强的客户端实例。这种方案的优势在于:
- 集中管理API密钥等重要信息
- 便于在不同模型配置间切换
- 保持代码整洁性和可维护性
中间层服务器方案
更灵活的方案是使用LLM中间层服务器(如OpenRouter或LiteLLM)作为过渡层。这种架构允许:
- 统一管理各种模型配置
- 轻松切换不同供应商的模型
- 集中实现特殊功能如搜索增强
技术要点解析
-
结构化输出与功能增强的区别:需要明确区分用于获取结构化输出的"Tool Calling"和用于增强模型能力的"工具使用"是两个不同的概念。
-
多语言支持考量:不同语言客户端可能有不同的实现限制,需要根据具体环境选择合适的实现方案。
-
配置管理:建议将模型配置与业务逻辑分离,便于维护和扩展。
最佳实践建议
对于BoundaryML项目中的Google搜索增强实现,推荐采用以下策略:
- 对于Python环境,优先考虑客户端封装方案
- 对于Rust等语言环境,可能需要直接与底层API交互
- 长期项目建议采用中间层服务器架构,提高系统灵活性
- 重要配置如API密钥应通过环境变量管理
通过合理选择实现方案,开发者可以充分利用Google搜索增强功能,为应用提供更准确、实时的信息处理能力。
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
421
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869