Langchain-ChatGLM高并发场景下的问题分析与解决方案
在实际生产环境中,Langchain-ChatGLM项目在0.3.1版本部署后,当多个用户同时访问WebUI进行提问时,系统会出现一系列错误。这些错误主要表现为连接中断、流式响应异常以及GPU资源耗尽等问题,严重影响了系统的稳定性和用户体验。
问题现象分析
当两个用户同时访问系统时,会出现以下典型错误:
- 流式响应中断:系统在SSE(Server-Sent Events)流式传输过程中出现连接中断,表现为"Cancelled by cancel scope"错误
- 协议异常:HTTP协议层出现"peer closed connection without sending complete message body"错误,表明连接被异常终止
- GPU资源不足:当并发请求增加时,GPU显存不足导致模型推理失败
这些问题的根本原因在于系统对高并发场景的处理能力不足,特别是在资源分配和错误处理机制方面存在优化空间。
技术解决方案
1. 并发控制参数调整
在0.2.10版本中,可以通过修改startup.py
模块中的create_model_worker_app()
函数,调整模型工作线程的并发上限参数:
args.limit_worker_concurrency = 10 # 默认值为5,适当提高可增强并发能力
经过实际测试,并发线程数与工作线程(worker)的比例保持在1:1.5左右时,系统表现最为稳定。这个比例既能保证较高的算力利用率,又能避免GPU显存过载。
2. 错误处理机制优化
在流式响应过程中,当GPU显存不足时,系统需要给出明确的错误提示而非直接崩溃。可以在openai.py
中的_astream()
函数中添加显存检查逻辑:
if not isinstance(chunk, dict):
chunk = chunk.dict()
if chunk["choices"] is None or len(chunk["choices"]) == 0:
print("========Tokens大小超出显存极限!========")
choice = {'delta': {'content': 'Tokens大小超出显存极限!', 'function_call': None, 'role': 'assistant', 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}
else:
choice = chunk["choices"][0]
这种处理方式能够在资源不足时优雅地降级,提供友好的错误提示,而不是直接中断服务。
3. 版本选择建议
值得注意的是,在3.0版本中移除了limit_worker_concurrency
参数,转而使用DEFAULT_API_CONCURRENCIES
参数来控制并发。对于需要高并发支持的场景,可以考虑暂时回退到0.2.10版本,利用其成熟的并发控制机制。
硬件配置建议
根据用户反馈,在使用RTX3090(24GB显存)和6核CPU的硬件配置上运行GLM4模型时,系统在高并发场景下表现不佳。这表明:
- 显存容量:24GB显存对于GLM4模型的多并发推理可能不足
- CPU核心数:6核CPU可能成为性能瓶颈
- 工作线程配置:需要根据实际硬件能力合理设置工作线程数量
建议在高并发生产环境中使用更高配置的硬件,如A100(80GB)等专业级GPU,并配备更多CPU核心以支持并行处理。
总结
Langchain-ChatGLM项目在高并发场景下的稳定性问题需要从多个维度进行优化:包括参数调优、错误处理机制完善、版本选择以及硬件配置等方面。通过合理的并发控制策略和资源管理,可以显著提升系统的稳定性和响应能力。未来版本的开发中,期待官方能进一步完善高并发支持,降低部署和调优的复杂度。
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0256Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
最新内容推荐
项目优选









