首页
/ Langchain-ChatGLM高并发场景下的问题分析与解决方案

Langchain-ChatGLM高并发场景下的问题分析与解决方案

2025-05-04 07:54:29作者:苗圣禹Peter

在实际生产环境中,Langchain-ChatGLM项目在0.3.1版本部署后,当多个用户同时访问WebUI进行提问时,系统会出现一系列错误。这些错误主要表现为连接中断、流式响应异常以及GPU资源耗尽等问题,严重影响了系统的稳定性和用户体验。

问题现象分析

当两个用户同时访问系统时,会出现以下典型错误:

  1. 流式响应中断:系统在SSE(Server-Sent Events)流式传输过程中出现连接中断,表现为"Cancelled by cancel scope"错误
  2. 协议异常:HTTP协议层出现"peer closed connection without sending complete message body"错误,表明连接被异常终止
  3. GPU资源不足:当并发请求增加时,GPU显存不足导致模型推理失败

这些问题的根本原因在于系统对高并发场景的处理能力不足,特别是在资源分配和错误处理机制方面存在优化空间。

技术解决方案

1. 并发控制参数调整

在0.2.10版本中,可以通过修改startup.py模块中的create_model_worker_app()函数,调整模型工作线程的并发上限参数:

args.limit_worker_concurrency = 10  # 默认值为5,适当提高可增强并发能力

经过实际测试,并发线程数与工作线程(worker)的比例保持在1:1.5左右时,系统表现最为稳定。这个比例既能保证较高的算力利用率,又能避免GPU显存过载。

2. 错误处理机制优化

在流式响应过程中,当GPU显存不足时,系统需要给出明确的错误提示而非直接崩溃。可以在openai.py中的_astream()函数中添加显存检查逻辑:

if not isinstance(chunk, dict):
    chunk = chunk.dict()
    if chunk["choices"] is None or len(chunk["choices"]) == 0:
        print("========Tokens大小超出显存极限!========")
        choice = {'delta': {'content': 'Tokens大小超出显存极限!', 'function_call': None, 'role': 'assistant', 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}
    else:
        choice = chunk["choices"][0]

这种处理方式能够在资源不足时优雅地降级,提供友好的错误提示,而不是直接中断服务。

3. 版本选择建议

值得注意的是,在3.0版本中移除了limit_worker_concurrency参数,转而使用DEFAULT_API_CONCURRENCIES参数来控制并发。对于需要高并发支持的场景,可以考虑暂时回退到0.2.10版本,利用其成熟的并发控制机制。

硬件配置建议

根据用户反馈,在使用RTX3090(24GB显存)和6核CPU的硬件配置上运行GLM4模型时,系统在高并发场景下表现不佳。这表明:

  1. 显存容量:24GB显存对于GLM4模型的多并发推理可能不足
  2. CPU核心数:6核CPU可能成为性能瓶颈
  3. 工作线程配置:需要根据实际硬件能力合理设置工作线程数量

建议在高并发生产环境中使用更高配置的硬件,如A100(80GB)等专业级GPU,并配备更多CPU核心以支持并行处理。

总结

Langchain-ChatGLM项目在高并发场景下的稳定性问题需要从多个维度进行优化:包括参数调优、错误处理机制完善、版本选择以及硬件配置等方面。通过合理的并发控制策略和资源管理,可以显著提升系统的稳定性和响应能力。未来版本的开发中,期待官方能进一步完善高并发支持,降低部署和调优的复杂度。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
27
11
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
469
3.48 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
flutter_flutterflutter_flutter
暂无简介
Dart
716
172
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
kernelkernel
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
208
83
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
rainbondrainbond
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1