Apollo Client v4.0.0-alpha.8 测试版发布:MockLink与错误处理的重大改进
项目简介
Apollo Client 是一个强大的 GraphQL 客户端库,广泛应用于现代前端开发中。它提供了数据管理、缓存、错误处理等一系列功能,帮助开发者高效地与 GraphQL API 交互。本次发布的 v4.0.0-alpha.8 版本是 4.0 大版本更新前的测试版本,主要针对测试工具 MockLink 和错误处理机制进行了重大改进。
主要变更内容
MockLink 的重大改进
-
默认延迟行为变更
现在所有通过 MockLink 传递的模拟响应默认会使用
realisticDelay函数添加延迟。这一改变确保了测试能够正确处理加载状态,不再依赖于特定的时间点。开发者可以通过设置全局或实例级别的默认值来覆盖这一行为。 -
变量匹配器简化
移除了
variableMatcher选项,现在直接在request.variables中传递回调函数来判断是否匹配请求变量。这一变更使 API 更加直观和简洁。 -
移除 newData 选项
移除了原本的
newData选项,推荐使用result回调函数配合maxUsageCount选项来实现类似功能。这一变化统一了 API 设计,减少了概念上的冗余。 -
延迟配置增强
现在
delay选项可以接受回调函数,根据当前操作动态决定延迟时间。同时引入了realisticDelay辅助函数,可以生成 20-50ms 之间的随机延迟,更接近真实网络环境。
错误处理机制重构
-
统一错误报告
onError链接现在使用单一的error属性来报告错误,而不是分开的graphQLErrors和networkError。错误可能是CombinedGraphQLErrors、CombinedProtocolErrors或其他非 GraphQL 错误的实例。 -
移除废弃 API
移除了
ApolloLink中的onError和setOnError方法,这些方法原本只被MockLink用于重写错误。
其他重要变更
-
入口点统一
@apollo/client和@apollo/client/core入口点现在功能相同,为未来移除@apollo/client/core做准备。 -
客户端查询验证
现在当在 MockLink 的模拟响应中使用客户端查询时会抛出错误,防止误用。
技术影响与最佳实践
这些变更对开发者测试 GraphQL 应用的方式产生了重要影响:
-
更真实的测试环境
默认的
realisticDelay行为迫使开发者考虑加载状态的处理,使测试更接近真实用户体验。 -
更清晰的错误处理
统一的错误报告机制简化了错误处理逻辑,使代码更加清晰和一致。
-
更灵活的模拟配置
延迟回调函数和全局/实例级别的默认配置提供了更大的灵活性,可以针对不同测试场景进行优化。
对于升级到这一版本的开发者,建议:
- 检查并更新所有使用
variableMatcher的测试代码 - 将
newData用法迁移到result回调 - 评估默认延迟行为对现有测试的影响
- 更新错误处理逻辑以适应新的统一错误报告机制
总结
Apollo Client v4.0.0-alpha.8 通过改进 MockLink 和错误处理机制,为开发者提供了更强大、更一致的测试工具。这些变更不仅提高了测试的真实性,还简化了 API 设计,为即将到来的 4.0 正式版奠定了坚实基础。开发者应尽早尝试这一测试版本,为未来的升级做好准备。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00