首页
/ LongWriter项目显存需求分析与优化建议

LongWriter项目显存需求分析与优化建议

2025-07-10 07:30:33作者:管翌锬

在部署和训练大型语言模型时,显存需求是开发者最关心的技术指标之一。本文将以THUDM/LongWriter项目为例,深入分析GLM-4-9B和Llama-3.1-8B等大模型在不同场景下的显存需求,并提供专业优化建议。

模型训练显存需求

对于GLM-4-9B和Llama-3.1-8B这类大模型,当处理32k长度的序列进行训练时,显存需求会显著增加。根据实测数据,这类训练任务通常需要约80GB的显存容量。

这种高显存需求主要来自以下几个方面:

  1. 模型参数存储:8B-9B参数规模的模型本身就需要大量显存
  2. 长序列处理:32k的上下文长度会显著增加注意力机制的计算复杂度
  3. 训练过程中的中间变量:包括梯度、优化器状态等都需要额外显存

模型推理显存需求

相比训练阶段,使用vLLM等高效推理框架部署时,显存需求会大幅降低。对于同样的GLM-4-9B/Llama-3.1-8B模型,在vLLM框架下部署仅需约20GB显存即可流畅运行。

这种显存优化主要得益于:

  1. 推理框架的内存共享机制
  2. 不需要存储训练相关的中间状态
  3. 优化的KV缓存管理

显存优化建议

对于资源受限的开发环境,可以考虑以下优化策略:

  1. 使用量化技术:如4-bit或8-bit量化可显著降低显存占用
  2. 采用梯度检查点技术:以计算时间换取显存空间
  3. 使用模型并行:将大模型拆分到多个GPU上运行
  4. 优化批处理大小:适当减小batch size可降低显存压力

总结

THUDM/LongWriter项目中的大模型对显存有较高要求,开发者需要根据实际应用场景(训练/推理)合理规划硬件资源。通过选择合适的框架和优化技术,可以在保证性能的同时有效降低显存需求,使大模型应用更加普惠。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8