DSPy项目中利用自定义适配器处理LLM输出的技术方案
2025-05-08 16:56:42作者:管翌锬
在基于DSPy框架开发大语言模型应用时,开发者经常会遇到模型输出格式不规范的问题。本文将以deepseek系列模型为例,介绍如何通过自定义适配器(Adapter)实现对语言模型输出的预处理和格式控制。
问题背景
当使用dspy.Predict模块时,某些开源模型如deepseek-r1系列会产生包含冗余标签的文本输出。例如模型会在响应中添加<thinking></thinking>这样的标记,这些内容并非我们需要的最终输出,但会干扰后续处理流程。
技术挑战
传统的验证方式如Pydantic的model_validator只能在数据转换完成后进行校验,而我们需要的是在原始输出被解析前就能进行预处理的能力。这要求我们对DSPy的预测流程有更底层的控制。
解决方案:自定义适配器
DSPy框架提供了Adapter基类,允许开发者完全控制模型输入输出的格式化过程。以下是实现方案的核心要点:
- 继承Adapter基类:创建自定义适配器类,重写关键方法
- 输入格式化:通过format方法构造符合要求的prompt结构
- 输出解析:在parse方法中实现原始输出的清洗和转换
实现细节
一个典型适配器实现需要包含以下核心方法:
class CustomAdapter(dspy.Adapter):
def format(self, signature, demos, inputs):
# 构造模型输入消息
messages = []
# 添加示例对话
for demo in demos:
messages.append(self._format_user_message(signature, demo))
messages.append(self._format_assistant_message(signature, demo))
# 添加当前输入
messages.append(self._format_user_message(signature, inputs))
return messages
def _format_user_message(self, signature, data):
# 构造用户消息模板
fields = [f"<field:{k}>\n{data[k]}\n</field:{k}>"
for k in signature.input_fields.keys() if k in data]
fields.append(signature.instructions)
return {"role": "user", "content": '\n\n======\n\n'.join(fields)}
def _format_assistant_message(self, signature, data):
# 构造助手消息模板
output_data = {k: v for k, v in data.items()
if k in signature.output_fields}
return {"role": "assistant", "content": list(output_data.values())[0]}
def parse(self, signature, completion):
# 解析并清洗模型输出
field_name = list(signature.output_fields.keys())[0]
return {field_name: self._clean_output(completion)}
def _clean_output(self, text):
# 实现具体的输出清洗逻辑
return text.replace("<thinking>", "").replace("</thinking>", "")
关键优势
- 预处理控制:可以在模型输出被解析前进行任意文本处理
- 格式灵活性:完全自定义输入输出的消息结构
- 示例集成:支持few-shot learning的示例格式化
- 指令融合:自动将签名中的指令整合到prompt中
实际应用建议
对于需要处理特殊输出格式的场景,建议:
- 在clean_output方法中实现具体的文本清洗逻辑
- 通过单元测试验证各种边缘情况
- 考虑输出验证失败时的重试机制
- 记录原始输出和清洗后的输出以便调试
总结
通过自定义适配器,开发者可以获得对DSPy预测流程的细粒度控制,有效解决特殊模型输出带来的兼容性问题。这种方法不仅适用于处理冗余标签,也可用于各种需要定制输入输出格式的场景,为构建健壮的大语言模型应用提供了重要保障。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896