VAST:空间增量广义线性混合模型的高效工具
2024-09-08 02:18:52作者:申梦珏Efrain
项目介绍
VAST(Vector Autoregressive Spatio-Temporal)是一个用于实现空间增量广义线性混合模型(delta-GLMM)的R包。该模型主要用于标准化调查或渔业依赖数据的多个类别(如物种、尺寸或年龄组)。VAST建立在先前的R包SpatialDeltaGLMM的基础上,并通过单元测试自动确认VAST和SpatialDeltaGLMM在多个真实世界案例研究中给出相同的结果(参数估计到小数点后三位)。VAST不仅提供了内置的诊断功能和模型比较工具,还旨在提高分析速度、可重复性、同行评审和指数标准化方法的解释性。
项目技术分析
VAST的核心技术是基于时空增量广义线性混合建模技术,该技术分别建模了至少捕获一个个体(“遭遇概率”)和至少有一个个体的捕捞率(“正捕捞率”)。模型默认包含年份间的密度变化(作为固定效应),并可以包含采样船只间的变化(作为随机效应),这些变化可能在不同类别之间相关联。空间和时空变化被近似为高斯马尔可夫随机场,这意味着空间变化的相关性随距离衰减。
项目及技术应用场景
VAST适用于需要估计空间密度变化的应用场景,特别是那些需要分析物种与栖息地关联以及目标物种在一年或多年的总丰度的研究。例如,渔业资源评估、生态系统监测和气候变化影响评估等领域都可以利用VAST进行数据标准化和模型构建。
项目特点
- 高效性:VAST通过优化算法和内置诊断功能,显著提高了分析速度和模型运行效率。
- 可重复性:通过单元测试确保与
SpatialDeltaGLMM的结果一致性,增强了模型的可重复性和可靠性。 - 用户友好:提供了丰富的学习资源,包括用户手册、示例代码、R帮助文档和在线讨论平台,方便用户快速上手和深入学习。
- 灵活性:支持多种数据类型和模型配置,能够适应不同的研究需求和数据特征。
通过VAST,研究人员可以更高效地进行空间数据分析,从而更好地理解和预测生态系统的动态变化。无论是初学者还是资深研究人员,VAST都将成为您数据分析工具箱中的得力助手。
立即访问VAST GitHub页面,开始您的数据分析之旅吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669