TorchTitan项目中使用Nsight Systems进行PyTorch性能分析指南
2025-06-20 01:22:59作者:翟江哲Frasier
概述
在深度学习模型开发过程中,性能分析是优化模型运行效率的关键步骤。Nsight Systems(nsys)作为NVIDIA提供的强大性能分析工具,能够帮助开发者深入了解PyTorch模型在GPU上的执行情况。本文将详细介绍如何在TorchTitan项目中正确使用Nsight Systems进行性能分析。
Nsight Systems简介
Nsight Systems是NVIDIA推出的系统级性能分析工具,它能够提供从CPU到GPU的完整执行时间线,包括内核执行、内存操作、CUDA API调用等信息。与PyTorch内置的profiler相比,Nsight Systems提供了更底层的硬件视角,特别适合分析GPU利用率、内存带宽等硬件相关指标。
正确使用Nsight Systems的方法
1. 命令行启动方式
最推荐的使用方式是通过命令行直接启动程序:
nsys profile --gpu-metrics-device=0 -o output_file_name python your_script.py
其中:
--gpu-metrics-device=0指定要收集指标的GPU设备-o指定输出文件名- 最后是要分析的Python脚本
2. 程序内API调用的注意事项
虽然PyTorch提供了torch.autograd.profiler.emit_nvtx()和torch.cuda.profiler等API,但这些主要用于与NVTX(NVIDIA工具扩展)集成,而不是替代Nsight Systems的命令行分析。正确的使用方式是:
import torch
# 这些调用主要是为了增强Nsight Systems收集的跟踪信息
with torch.autograd.profiler.emit_nvtx():
# 你的模型代码
pass
实际分析流程
- 收集数据:使用上述命令行方式运行程序,生成
.nsys-rep报告文件 - 可视化分析:使用Nsight Systems GUI打开报告文件
- 关键指标:重点关注
- GPU利用率
- 内核执行时间线
- 内存拷贝操作
- CUDA API调用
常见误区澄清
- emit_nvtx不是profiler:它只是向Nsight Systems等工具添加额外的注释信息,不能单独用于性能分析
- 程序内API不能替代命令行:完整的分析需要从程序启动就开始收集数据
- 采样频率:Nsight Systems默认采样频率可能不够高,对于短时间操作可能需要调整参数
高级技巧
- 结合PyTorch Profiler:可以同时使用PyTorch的profiler和Nsight Systems,获得不同层次的性能数据
- 自定义NVTX标记:在关键代码区域添加自定义标记,便于在报告中识别
- 多GPU分析:使用
--gpu-metrics-device=all收集所有GPU的数据
总结
在TorchTitan项目中使用Nsight Systems进行性能分析时,最重要的是理解工具的正确使用方式。命令行启动是最可靠的方法,而程序内的API调用主要用于增强分析数据的可读性。通过结合这两种方式,开发者可以获得全面的性能洞察,有效优化模型性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Tflite模型资源下载:轻松获取高效Tflite模型,助力AI开发 云知声离线TTS使用Demo:离线文本转语音,让应用更具人性 16路并行输入4096点FFT:FPGA源代码助力高速信号处理 华为HS8546V固件工具包全网通光猫升级利器:全网通光猫升级利器 高等电磁理论教材资源:为研究生打造的理论与实践结合教程 字模提取V2.2资源文件介绍:LED显示字模提取工具,助力高效开发 系统辨识及其MATLAB仿真书籍资源介绍 flex-2.5.37.tar.gz资源文件介绍:flex工具,编译器构建利器 COMTOKEY-串口输入模拟键盘输入工具 成都市矢量图shp格式-高清资源:地图制作与城市规划的理想选择
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134