Kvrocks项目中TDigest算法ADD命令的实现解析
2025-06-18 04:54:40作者:裴锟轩Denise
背景介绍
Kvrocks作为Redis的替代方案,正在逐步实现各种数据结构和算法。TDigest是一种高效的近似分位数计算算法,能够在大数据场景下快速计算数据分布特征。在Kvrocks项目中,实现TDigest算法的ADD命令是构建完整功能的第一步。
TDigest算法核心价值
TDigest算法通过维护一组中心点及其权重来近似表示数据分布,相比精确计算具有以下优势:
- 内存效率高,仅需存储少量中心点
- 计算复杂度低,适合实时分析
- 支持流式数据处理,可增量更新
ADD命令的技术实现
ADD命令是TDigest算法的基础操作,其核心功能是将新数据点合并到现有摘要中。实现时需要考虑以下技术要点:
-
数据结构设计:需要设计高效存储中心点及其权重的数据结构,通常采用平衡树或有序数组
-
合并策略:当新数据点加入时,需要确定是创建新中心点还是合并到邻近中心点,这关系到算法的精度和性能平衡
-
压缩控制:为防止中心点数量无限增长,需要实现自动压缩机制,合并相近中心点
-
并发控制:在多线程环境下,需要保证ADD操作的线程安全性
实现路径分析
从issue讨论可以看出,ADD命令的实现是其他相关命令(如MIN、MAX)的基础。实现顺序上应该:
- 首先完成ADD命令的核心功能
- 基于ADD命令构建测试数据集
- 再实现查询类命令如MIN、MAX等
- 最后实现更复杂的分位数查询
性能优化考虑
在实际实现中,还需要考虑以下优化点:
- 批量添加:支持一次添加多个数据点,减少网络开销
- 内存预分配:根据预期数据规模预先分配内存
- 自适应压缩:根据数据特征动态调整压缩阈值
总结
TDigest.ADD命令的实现是Kvrocks支持近似分位数计算的重要里程碑。通过精心设计数据结构和算法策略,可以在保证精度的同时获得高性能。这一基础功能的完成为后续更丰富的统计分析功能打下了坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
200
219
仓颉编译器源码及 cjdb 调试工具。
C++
129
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100