Litestar:简洁而强大的Python Web框架
2024-08-24 04:28:36作者:翟江哲Frasier
项目介绍
Litestar 是一个基于 Python 的现代 web 框架,它设计得极其轻量且高效,旨在简化 web 开发过程。Litestar 支持 ASGI(异步服务器网关接口),允许开发者构建高性能的应用程序。它内建了一系列功能,如依赖注入、路径操作、中间件支持等,同时保持了极简的API设计,使得新手易于上手,专家能够灵活运用。
项目快速启动
要快速启动一个基本的 Litestar 应用,首先确保你的环境安装了 Python 3.8 或更高版本。然后按照以下步骤进行:
# 创建一个新的虚拟环境(可选)
python -m venv myenv
source myenv/bin/activate # 在Windows上是 myenv\Scripts\activate
# 安装 Litestar
pip install litestar
# 创建并运行一个简单的应用
# 在你的工作目录中创建一个名为app.py的文件,输入以下内容:
```python
from litestar import Litestar, get
@get("/")
def hello_world() -> dict:
return {"message": "Hello, World!"}
app = Litestar(route_handlers=[hello_world])
# 运行你的应用
uvicorn app:app --reload
执行上述命令后,你的应用将在本地 http://127.0.0.1:8000/ 启动,你可以访问这个地址查看 "Hello, World!"。
应用案例和最佳实践
在实际开发中,Litestar的强大在于其对异步处理、依赖注入等高级特性的支持。一个常见的最佳实践是利用依赖注入来管理服务和数据库连接:
from typing import Annotated
from fastapi.requests import Request
from litestar import dependency
from litestar import get
@dependency
async def get_db(request: Request) -> YourDatabaseConnection:
"""示例依赖注入,用于获取数据库连接"""
return request.app.state.db
@get("/data")
async def fetch_data(db: Annotated[YourDatabaseConnection, Depends(get_db)]) -> list:
"""从数据库中获取数据"""
return await db.fetch_some_data()
这展示了如何通过依赖注入轻松地将数据库连接传递给路由处理器。
典型生态项目
虽然Litestar本身非常精简,但它的设计考虑到了与第三方库的兼容性,如使用pydantic进行请求和响应模型定义,以及集成ormar或SQLAlchemy进行数据库操作。社区也在不断成长,提供更多的插件和工具以扩展其能力。例如,对于认证和授权,可以探索使用基于JWT的认证插件,或者直接集成OAuth2解决方案。这些生态组件使Litestar成为构建复杂Web应用的一个强大选择,尽管具体的推荐生态项目随着时间和技术发展可能有所变化,建议参考Litestar的官方文档或GitHub页面上的插件列表,以获得最新和最全面的信息。
以上便是关于Litestar的基本介绍、快速启动指南、应用案例概览及其生态系统的简要说明。希望这能帮助你快速上手并深入了解这一优秀的Python Web框架。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140