在Burn框架中实现双模型独立参数更新的技术方案
2025-05-22 07:37:34作者:柯茵沙
在深度学习模型训练过程中,我们经常会遇到需要同时训练多个相互关联的模型的情况。本文将以Burn框架为例,详细介绍如何正确实现两个模型参数的独立更新。
场景描述
假设我们有两个模型:model1和model2,其中model2的输出作为model1的输入。我们需要:
- 使用loss1更新model1的参数
- 使用loss2更新model2的参数
- 确保两个模型的参数更新过程互不干扰
关键技术点
1. 梯度阻断技术
在计算loss1时,我们需要阻断梯度向model2的反向传播。这可以通过detach()方法实现:
let input_x = model2.forward(input).detach();
let loss1 = model1.forward(input_x).mean() - model1.forward(input_y).mean();
2. 独立优化器配置
为每个模型配置独立的优化器实例:
let mut optimizer1 = RmsPropConfig::new().init::<B, Model1<B>>();
let mut optimizer2 = RmsPropConfig::new().init::<B, Model2<B>>();
3. 梯度参数过滤
使用GradientsParams::from_grads()方法时,明确指定目标模型可以确保只更新指定模型的参数:
// 更新model1
let grads = loss1.backward();
let grads = GradientsParams::from_grads(grads, &model1);
model1 = optimizer1.step(lr, model1, grads);
// 更新model2
let grads = loss2.backward();
let grads = GradientsParams::from_grads(grads, &model2);
model2 = optimizer2.step(lr, model2, grads);
实现原理分析
-
计算图分离:通过
detach()方法,我们切断了计算图中model2到loss1的路径,确保loss1的反向传播不会影响model2的参数。 -
梯度隔离:虽然loss2的计算同时涉及model1和model2,但通过
GradientsParams的过滤功能,我们只提取model2的梯度进行更新。 -
优化器独立性:每个优化器实例维护自己的状态(如动量、二阶矩估计等),确保两个模型的优化过程完全独立。
常见问题与解决方案
-
梯度泄漏:如果忘记使用
detach(),会导致两个模型的参数同时更新。解决方案是仔细检查所有中间变量的梯度传播路径。 -
优化器状态混乱:错误地共享优化器实例会导致优化状态污染。解决方案是为每个模型创建独立的优化器实例。
-
计算效率:重复计算会增加训练时间。可以考虑缓存中间结果,但要确保不影响梯度计算。
最佳实践建议
-
在复杂模型交互场景中,建议使用模块化设计,明确每个模块的输入输出关系。
-
在关键位置添加断言检查,确保梯度计算符合预期。
-
对于更复杂的多模型训练场景,可以考虑使用自定义训练循环来更好地控制训练流程。
通过以上方法,我们可以在Burn框架中实现多个模型的独立训练,为构建复杂的深度学习系统提供了可靠的技术基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355