ZenML项目中Azure Blob存储的DefaultAzureCredentials支持解析
在云原生机器学习平台ZenML的实际部署中,Azure Blob存储的身份验证机制存在一个值得关注的技术点。本文将从技术实现角度深入分析当前限制的原因,并探讨可能的改进方向。
现状与背景
在AKS Kubernetes集群中使用ZenML时,工作负载身份(Workload Identity)是Azure推荐的认证方式。这种隐式认证机制目前已经成功应用于密钥存储、Kubernetes编排器等组件,但在Azure Blob存储和容器注册表(ACR)上却存在限制。
当前文档明确指出:
- Azure Blob存储仅支持服务主体(Service Principal)认证
- ACR在不启用管理员账户的情况下也无法使用隐式认证
技术限制分析
深入代码层面,我们发现adlfs.AzureBlobFileSystem实际上原生支持DefaultAzureCredential认证方式。那么为什么ZenML要做出这种限制呢?核心原因在于服务连接器(Service Connector)的实现机制。
服务连接器的标准工作流程是:
- 客户端向ZenML服务器请求连接凭证
- 服务器使用长期凭证生成短期会话令牌
- 客户端使用这个令牌访问资源
这种设计确保了长期凭证不会离开服务器,是重要的安全特性。然而Azure Blob存储是个例外 - 客户端直接接收服务主体凭证而非会话令牌。
当使用隐式认证时:
- 服务器端验证使用服务器的工作负载身份
- 客户端认证使用客户端的工作负载身份
- 不同客户端会因运行环境不同而得到不同结果
这种不一致性会导致难以调试的问题,因此目前做出了限制。
技术可行性探讨
从技术角度看,实现完全支持是可行的,但需要考虑以下关键点:
-
令牌生成机制:Azure令牌需要针对单个资源进行范围限定,而adlfs客户端需要生成多个具有不同范围的会话令牌
-
客户端兼容性:需要确保不同环境下的客户端都能正确处理生成的令牌
-
安全边界:保持服务连接器的安全模型不变,不泄露长期凭证
未来改进方向
理想的解决方案应包括:
- 实现从服务主体凭证生成短期会话令牌的能力
- 设计合理的令牌范围限定机制
- 提供清晰的错误处理和信息反馈
- 保持向后兼容性
这种改进将允许用户在不使用静态凭证的情况下,充分利用Azure工作负载身份的优势,同时保持系统的安全性和一致性。
总结
ZenML对Azure Blob存储认证方式的限制源于服务连接器的安全设计考虑,而非技术不可行。通过合理的架构调整,未来版本有望支持更灵活的认证方式,为云原生机器学习工作流提供更好的身份管理体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C068
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00