ZenML项目中Azure Blob存储的DefaultAzureCredentials支持解析
在云原生机器学习平台ZenML的实际部署中,Azure Blob存储的身份验证机制存在一个值得关注的技术点。本文将从技术实现角度深入分析当前限制的原因,并探讨可能的改进方向。
现状与背景
在AKS Kubernetes集群中使用ZenML时,工作负载身份(Workload Identity)是Azure推荐的认证方式。这种隐式认证机制目前已经成功应用于密钥存储、Kubernetes编排器等组件,但在Azure Blob存储和容器注册表(ACR)上却存在限制。
当前文档明确指出:
- Azure Blob存储仅支持服务主体(Service Principal)认证
- ACR在不启用管理员账户的情况下也无法使用隐式认证
技术限制分析
深入代码层面,我们发现adlfs.AzureBlobFileSystem
实际上原生支持DefaultAzureCredential
认证方式。那么为什么ZenML要做出这种限制呢?核心原因在于服务连接器(Service Connector)的实现机制。
服务连接器的标准工作流程是:
- 客户端向ZenML服务器请求连接凭证
- 服务器使用长期凭证生成短期会话令牌
- 客户端使用这个令牌访问资源
这种设计确保了长期凭证不会离开服务器,是重要的安全特性。然而Azure Blob存储是个例外 - 客户端直接接收服务主体凭证而非会话令牌。
当使用隐式认证时:
- 服务器端验证使用服务器的工作负载身份
- 客户端认证使用客户端的工作负载身份
- 不同客户端会因运行环境不同而得到不同结果
这种不一致性会导致难以调试的问题,因此目前做出了限制。
技术可行性探讨
从技术角度看,实现完全支持是可行的,但需要考虑以下关键点:
-
令牌生成机制:Azure令牌需要针对单个资源进行范围限定,而adlfs客户端需要生成多个具有不同范围的会话令牌
-
客户端兼容性:需要确保不同环境下的客户端都能正确处理生成的令牌
-
安全边界:保持服务连接器的安全模型不变,不泄露长期凭证
未来改进方向
理想的解决方案应包括:
- 实现从服务主体凭证生成短期会话令牌的能力
- 设计合理的令牌范围限定机制
- 提供清晰的错误处理和信息反馈
- 保持向后兼容性
这种改进将允许用户在不使用静态凭证的情况下,充分利用Azure工作负载身份的优势,同时保持系统的安全性和一致性。
总结
ZenML对Azure Blob存储认证方式的限制源于服务连接器的安全设计考虑,而非技术不可行。通过合理的架构调整,未来版本有望支持更灵活的认证方式,为云原生机器学习工作流提供更好的身份管理体验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









