Elasticsearch-NET 8.x 版本中嵌套聚合查询的实现方法
2025-06-20 17:06:27作者:沈韬淼Beryl
在Elasticsearch-NET 8.x版本中,聚合查询的API设计发生了显著变化,特别是嵌套聚合的实现方式与之前版本有所不同。本文将详细介绍如何在最新版本中正确构建嵌套聚合查询。
嵌套聚合的基本概念
嵌套聚合是指在一个聚合查询中包含另一个聚合查询,形成层级结构。这种结构在数据分析中非常常见,例如先按类别分组,然后在每个类别中计算某些指标的统计值。
8.x版本中的实现方式
在8.13.0版本中,Elasticsearch-NET引入了新的API设计,使得嵌套聚合的实现更加明确和类型安全。以下是实现嵌套聚合的正确方法:
// 首先创建主聚合
var mainAggregation = Aggregation.Terms(new TermsAggregation
{
Field = Infer.Field("seqIdFieldName"),
Size = 100
});
// 为主聚合添加子聚合
mainAggregation.Aggregations = new Dictionary<string, Aggregation>
{
{
"sub_aggregation_name", // 子聚合名称
Aggregation.Cardinality(new CardinalityAggregation
{
Field = "uniqueId" // 子聚合字段
})
}
};
// 构建完整的搜索请求
var request = new SearchRequest("index_name")
{
Aggregations = new Dictionary<string, Aggregation>
{
{
"main_aggregation_name", // 主聚合名称
mainAggregation
}
},
From = 0,
Size = 100
};
关键点解析
-
聚合层级结构:通过
Aggregations属性实现嵌套,每个聚合都可以包含自己的子聚合字典。 -
聚合命名:每个聚合在添加到字典时都需要指定名称,这个名称将出现在最终结果中。
-
聚合构建器:使用
Aggregation类的静态方法(如Terms、Cardinality等)来创建不同类型的聚合。 -
类型安全:新API提供了更好的类型检查,减少了运行时错误的可能性。
与旧版本的对比
在NEST库的旧版本中,使用的是AggregationContainer和AggregationDictionary类来实现嵌套聚合。新版本简化了这一设计,直接使用Dictionary<string, Aggregation>和具体的聚合类型,使得代码更加直观。
实际应用场景
这种嵌套聚合结构特别适用于以下场景:
- 电商数据分析(先按商品类别分组,再计算每类的销售额统计)
- 日志分析(先按错误级别分组,再计算每种级别的出现频率)
- 用户行为分析(先按用户分组,再分析每个用户的行为模式)
总结
Elasticsearch-NET 8.x版本通过更清晰的API设计,使得构建复杂的嵌套聚合查询变得更加简单和直观。开发者只需理解聚合的层级结构和命名机制,就能轻松实现各种复杂的数据分析需求。这种设计不仅提高了代码的可读性,也增强了类型安全性,是Elasticsearch .NET客户端库向前迈进的重要一步。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137