如何使用 Apache SkyWalking Helm 在 Kubernetes 集群中部署 SkyWalking
在当今微服务架构日益流行的背景下,应用性能监控(APM)变得尤为重要。Apache SkyWalking 是一款开源的分布式追踪系统,它可以帮助您监控、追踪和诊断微服务架构中的问题。本文将向您介绍如何使用 Apache SkyWalking Helm 仓库在 Kubernetes 集群中快速部署 SkyWalking。
引言
随着微服务架构的复杂性增加,监控和诊断应用性能问题变得越来越困难。SkyWalking 提供了一种简单且高效的方式来监控微服务的性能,帮助开发人员和运维人员快速定位问题。使用 Kubernetes Helm 仓库可以极大地简化部署过程,让您能够快速开始监控。
主体
准备工作
在开始部署之前,您需要确保以下条件已经满足:
- Kubernetes 集群已搭建完毕
- Helm 3 已安装在您的本地环境
- 您具有访问 Kubernetes 集群的权限
模型使用步骤
以下是使用 Apache SkyWalking Helm 仓库在 Kubernetes 集群中部署 SkyWalking 的步骤:
1. 设置变量
首先,设置一些变量以便后续使用:
export SKYWALKING_RELEASE_VERSION=4.6.0 # 根据需要更改版本号
export SKYWALKING_RELEASE_NAME=skywalking # 根据场景更改发布名称
export SKYWALKING_RELEASE_NAMESPACE=default # 更改您想要安装 SkyWalking 的命名空间
2. 使用 Docker Helm 仓库安装发布版本
安装 SkyWalking 的发布版本,可以使用以下命令:
helm install "${SKYWALKING_RELEASE_NAME}" \
oci://registry-1.docker.io/apache/skywalking-helm \
--version "${SKYWALKING_RELEASE_VERSION}" \
-n "${SKYWALKING_RELEASE_NAMESPACE}" \
--set oap.image.tag=10.0.1 \
--set oap.storageType=elasticsearch \
--set ui.image.tag=10.0.1
如果您想要使用 BanyanDB 作为存储解决方案,可以尝试以下命令:
helm install "${SKYWALKING_RELEASE_NAME}" \
oci://registry-1.docker.io/apache/skywalking-helm \
--version "${SKYWALKING_RELEASE_VERSION}" \
-n "${SKYWALKING_RELEASE_NAMESPACE}" \
--set oap.image.tag=10.0.1 \
--set oap.storageType=banyandb \
--set ui.image.tag=10.0.1 \
--set elasticsearch.enabled=false \
--set banyandb.enabled=true \
--set banyandb.image.tag=0.7.0
3. 使用 Apache Jfrog Helm 仓库安装发布版本
对于早期版本的 SkyWalking,可以使用以下命令:
export REPO=skywalking
helm repo add ${REPO} https://apache.jfrog.io/artifactory/skywalking-helm
4. 安装开发版本
如果您想要从 master 分支安装 SkyWalking,可以按照以下步骤操作:
export REPO=chart
git clone https://github.com/apache/skywalking-helm
cd skywalking-helm
helm repo add elastic https://helm.elastic.co
helm dep up ${REPO}/skywalking
5. 安装卫星网关
如果您想要启用卫星网关,可以按照以下步骤操作:
helm install "${SKYWALKING_RELEASE_NAME}" ${REPO}/skywalking -n "${SKYWALKING_RELEASE_NAMESPACE}" \
--set satellite.enabled=true \
--set satellite.image.tag=v0.4.0
结果分析
部署完成后,您可以通过访问 SkyWalking UI 来查看监控结果。性能评估指标包括但不限于延迟、吞吐量和错误率。
结论
使用 Apache SkyWalking Helm 仓库在 Kubernetes 集群中部署 SkyWalking 是一个高效且简便的过程。它不仅可以帮助您快速搭建监控环境,还能够随着业务的发展进行灵活扩展。通过本文的介绍,您应该已经掌握了如何在 Kubernetes 中部署 SkyWalking 的基本步骤。在实际应用中,您可以根据具体的业务需求和性能指标进一步优化配置。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00