如何使用 Apache SkyWalking Helm 在 Kubernetes 集群中部署 SkyWalking
在当今微服务架构日益流行的背景下,应用性能监控(APM)变得尤为重要。Apache SkyWalking 是一款开源的分布式追踪系统,它可以帮助您监控、追踪和诊断微服务架构中的问题。本文将向您介绍如何使用 Apache SkyWalking Helm 仓库在 Kubernetes 集群中快速部署 SkyWalking。
引言
随着微服务架构的复杂性增加,监控和诊断应用性能问题变得越来越困难。SkyWalking 提供了一种简单且高效的方式来监控微服务的性能,帮助开发人员和运维人员快速定位问题。使用 Kubernetes Helm 仓库可以极大地简化部署过程,让您能够快速开始监控。
主体
准备工作
在开始部署之前,您需要确保以下条件已经满足:
- Kubernetes 集群已搭建完毕
- Helm 3 已安装在您的本地环境
- 您具有访问 Kubernetes 集群的权限
模型使用步骤
以下是使用 Apache SkyWalking Helm 仓库在 Kubernetes 集群中部署 SkyWalking 的步骤:
1. 设置变量
首先,设置一些变量以便后续使用:
export SKYWALKING_RELEASE_VERSION=4.6.0 # 根据需要更改版本号
export SKYWALKING_RELEASE_NAME=skywalking # 根据场景更改发布名称
export SKYWALKING_RELEASE_NAMESPACE=default # 更改您想要安装 SkyWalking 的命名空间
2. 使用 Docker Helm 仓库安装发布版本
安装 SkyWalking 的发布版本,可以使用以下命令:
helm install "${SKYWALKING_RELEASE_NAME}" \
oci://registry-1.docker.io/apache/skywalking-helm \
--version "${SKYWALKING_RELEASE_VERSION}" \
-n "${SKYWALKING_RELEASE_NAMESPACE}" \
--set oap.image.tag=10.0.1 \
--set oap.storageType=elasticsearch \
--set ui.image.tag=10.0.1
如果您想要使用 BanyanDB 作为存储解决方案,可以尝试以下命令:
helm install "${SKYWALKING_RELEASE_NAME}" \
oci://registry-1.docker.io/apache/skywalking-helm \
--version "${SKYWALKING_RELEASE_VERSION}" \
-n "${SKYWALKING_RELEASE_NAMESPACE}" \
--set oap.image.tag=10.0.1 \
--set oap.storageType=banyandb \
--set ui.image.tag=10.0.1 \
--set elasticsearch.enabled=false \
--set banyandb.enabled=true \
--set banyandb.image.tag=0.7.0
3. 使用 Apache Jfrog Helm 仓库安装发布版本
对于早期版本的 SkyWalking,可以使用以下命令:
export REPO=skywalking
helm repo add ${REPO} https://apache.jfrog.io/artifactory/skywalking-helm
4. 安装开发版本
如果您想要从 master 分支安装 SkyWalking,可以按照以下步骤操作:
export REPO=chart
git clone https://github.com/apache/skywalking-helm
cd skywalking-helm
helm repo add elastic https://helm.elastic.co
helm dep up ${REPO}/skywalking
5. 安装卫星网关
如果您想要启用卫星网关,可以按照以下步骤操作:
helm install "${SKYWALKING_RELEASE_NAME}" ${REPO}/skywalking -n "${SKYWALKING_RELEASE_NAMESPACE}" \
--set satellite.enabled=true \
--set satellite.image.tag=v0.4.0
结果分析
部署完成后,您可以通过访问 SkyWalking UI 来查看监控结果。性能评估指标包括但不限于延迟、吞吐量和错误率。
结论
使用 Apache SkyWalking Helm 仓库在 Kubernetes 集群中部署 SkyWalking 是一个高效且简便的过程。它不仅可以帮助您快速搭建监控环境,还能够随着业务的发展进行灵活扩展。通过本文的介绍,您应该已经掌握了如何在 Kubernetes 中部署 SkyWalking 的基本步骤。在实际应用中,您可以根据具体的业务需求和性能指标进一步优化配置。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00