netbox-branching 的安装和配置教程
项目基础介绍
netbox-branching 是一个为 NetBox 提供分支功能的官方插件,它允许用户创建 NetBox 数据库的静态快照,这些快照可以独立修改,并在之后合并回主数据库。这种功能使用户能够在不影响网络真相源完整性的情况下,对 NetBox 中的对象进行“离线”更改。此外,它也提供了一个机会,在应用更改之前可以批量审查这些更改。
该项目的主要编程语言是 Python。
项目使用的关键技术和框架
- NetBox: 一个开源的 IP 地址管理(IPAM)和数据中心自动化工具。
- PostgreSQL: 一个功能强大的开源对象关系型数据库系统。
- Django: 一个用于快速开发网站的高级 Python Web 框架。
项目安装和配置的准备工作
在开始安装 netbox-branching 插件之前,请确保您的系统满足以下要求:
- NetBox 版本 4.1 或更高。
- PostgreSQL 版本 12 或更高。
- Python 环境已经设置好,并且能够运行 NetBox。
接下来是详细的安装步骤:
-
授权 PostgreSQL 权限
首先,需要给 NetBox 数据库用户授权创建架构的权限:
GRANT CREATE ON DATABASE $database TO $user;请将
$database替换为实际的数据库名称,将$user替换为实际的数据库用户名称。 -
激活 NetBox 虚拟环境
在终端中,进入到 NetBox 的虚拟环境目录,并激活它:
$ source /opt/netbox/venv/bin/activate -
安装 netbox-branching 插件
使用 pip 命令从 PyPI 安装 netbox-branching 插件:
$ pip install netboxlabs-netbox-branching -
配置 NetBox 以使用插件
打开 NetBox 的
configuration.py文件,并在PLUGINS列表的末尾添加netbox_branching。请注意,netbox_branching必须是列表中的最后一个插件。PLUGINS = [ # ... 'netbox_branching', ] -
创建 local_settings.py
在与
settings.py相同的目录中创建一个local_settings.py文件,以覆盖DATABASES和DATABASE_ROUTERS设置,从而启用动态架构支持。from netbox_branching.utilities import DynamicSchemaDict from .configuration import DATABASE # 使用 DynamicSchemaDict 包装 DATABASES 以支持动态架构 DATABASES = DynamicSchemaDict({ 'default': DATABASE, }) # 使用自定义数据库路由器 DATABASE_ROUTERS = [ 'netbox_branching.database.BranchAwareRouter', ] -
运行 NetBox 迁移
最后,运行以下命令来执行 NetBox 迁移,应用 netbox-branching 插件的数据库变更:
$ ./manage.py migrate
完成以上步骤后,netbox-branching 插件应该就已经成功安装并配置完成了。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00