SuGaR项目大场景优化:解决显存不足问题的技术方案
2025-06-29 17:25:49作者:咎岭娴Homer
在3D场景重建领域,SuGaR项目作为基于高斯泼溅技术的创新解决方案,在处理大规模场景时可能会遇到显存不足(OOM)的问题。本文将深入分析这一技术挑战及其解决方案。
问题背景
当处理包含超过1200张输入图像的大规模场景时,SuGaR项目在训练过程中容易出现显存不足的情况。这主要是因为:
- 相机参数和图像数据默认存储在GPU显存中
- 大规模场景数据会快速耗尽显存资源
- 传统实现未针对大数据集进行显存优化
技术解决方案
通过分析项目代码,我们发现可以通过以下两个关键修改解决显存问题:
1. 相机数据处理优化
在sugar_scene/cameras.py中,将相机相关数据显式指定存储在CPU内存而非GPU显存中。这种修改通过减少GPU显存占用,为其他计算任务释放了宝贵资源。
2. 训练过程显存管理
在sugar_trainers/coarse_sdf.py和sugar_trainers/refine.py中,同样采用将数据保留在CPU内存的策略,仅在需要计算时才将数据转移到GPU。这种"按需加载"的方式显著降低了峰值显存使用量。
技术影响分析
这种优化方案具有以下特点:
- 理论等价性:从算法角度,这种修改不会影响最终结果质量
- 性能权衡:可能会略微降低训练速度,因为增加了CPU-GPU数据传输
- 可扩展性:使系统能够处理更大规模的场景数据集
- 兼容性:与原始高斯泼溅技术的数据处理策略一致
实践建议
对于面临类似显存问题的开发者,我们建议:
- 对于中等规模场景,可以保持默认GPU存储以获得最佳性能
- 当处理超大规模数据(>1000张图像)时,建议采用本文的CPU存储方案
- 可以进一步探索数据分批加载策略,在内存和速度间取得更好平衡
- 监控训练过程中的显存使用情况,根据实际情况调整策略
结论
SuGaR项目通过合理的数据存储策略调整,成功解决了大规模场景下的显存不足问题。这种解决方案不仅保持了算法的理论正确性,还为处理更大规模3D场景提供了可能,对于推动3D重建技术的实际应用具有重要意义。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
270
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869