deep-research-mcp 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
deep-research-mcp 是一个开源项目,它是一个基于人工智能的研究助手,能够对任何主题进行深度、迭代的研究。该项目结合了搜索引擎、网页抓取和人工智能技术,以深入探索主题并生成全面的报告。它既可以作为一个模型上下文协议(MCP)工具,也可以作为独立的命令行界面(CLI)使用。通过查看 exampleout.md 文件,可以看到报告的一个示例。
该项目主要使用 TypeScript(98.6%)和 JavaScript(1.1%)编写。
2. 项目使用的关键技术和框架
- 搜索引擎和网页抓取:项目通过生成针对性的搜索查询,利用搜索引擎和网页抓取技术进行深度研究。
- 人工智能:使用人工智能对搜索结果进行评估,生成可靠性评分,并优先考虑高可靠性(≥0.7)的来源。
- 模型上下文协议(MCP):项目支持作为 MCP 工具使用,以便与 AI 代理进行交互。
- Markdown 报告生成:生成的报告采用 Markdown 格式,详细记录学习内容、来源和可靠性评估。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统中已安装以下软件:
- Node.js:项目依赖于 Node.js 环境。
- Git:用于克隆项目代码。
安装步骤
-
克隆项目仓库
打开终端(或命令提示符),运行以下命令克隆项目:
git clone https://github.com/Ozamatash/deep-research-mcp.git -
进入项目目录
克隆完成后,进入项目目录:
cd deep-research-mcp -
安装依赖
在项目目录中,使用以下命令安装项目依赖:
npm install -
设置环境变量
复制
.env.example文件为.env.local并根据实际情况编辑环境变量:cp .env.example .env.local打开
.env.local文件,根据需要配置环境变量。 -
构建项目
运行以下命令构建项目:
npm run build -
运行 CLI 版本
使用以下命令运行 CLI 版本的研究查询:
npm run start "Your research query here"替换
"Your research query here"为您的研究查询。 -
(可选)设置本地 Firecrawl
如果需要使用本地 Firecrawl,请按照以下步骤操作:
-
克隆本地 Firecrawl 仓库:
git clone https://github.com/Ozamatash/localfirecrawl.git cd localfirecrawl -
按照本地 Firecrawl 的
README文档进行设置。 -
更新
.env.local文件中的FIRECRAWL_BASE_URL:FIRECRAWL_BASE_URL=http://localhost:3002
-
-
(可选)添加 observability
如果需要添加可观测性来跟踪研究流程、查询和结果,请按照以下步骤操作:
-
在
.env.local文件中添加 Langfuse 公钥和私钥:LANGFUSE_PUBLIC_KEY=your_langfuse_public_key LANGFUSE_SECRET_KEY=your_langfuse_secret_key -
如果没有提供 Langfuse 密钥,应用程序将正常工作,但不会启用可观测性。
-
以上步骤完成后,您就可以开始使用 deep-research-mcp 进行研究了。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00