ngneat/spectator 对 Angular 17.1 输入信号的支持解析
背景介绍
随着 Angular 17.1 的发布,引入了输入信号(input signals)这一新特性。输入信号是 Angular 信号(signals)系统的一部分,为组件输入提供了更强大的类型安全和响应式能力。然而,这一新特性最初并未得到测试工具 ngneat/spectator 的完全支持,这促使社区贡献者开始研究如何实现这一功能。
输入信号的基本概念
在 Angular 17.1 中,输入信号允许开发者以声明式的方式定义组件输入:
@Component({
selector: 'app-signal-input',
template: `
@if(show()) {
<div id="text">Hello</div>
}
`,
standalone: true,
})
export class SignalInputComponent {
public show = input(false);
}
这种新语法相比传统的 @Input() 装饰器,提供了更好的类型推断和响应式能力。
测试挑战
在测试环境中,使用 ngneat/spectator 测试这样的组件时遇到了两个主要问题:
-
类型推断问题:当尝试通过 props 设置输入值时,TypeScript 会报类型不匹配的错误,因为测试工具无法正确识别输入信号的类型。
-
值设置机制:传统的通过直接赋值设置输入值的方式不适用于输入信号,需要采用 Angular 提供的专用 API。
解决方案实现
类型推断改进
通过创建专门的类型工具,可以正确推断输入信号的类型:
export type InferSignalInputs<C> = {
[P in keyof C]+?: C[P] extends InputSignal<infer T> ? T : C[P];
};
这个类型工具能够识别输入信号并提取其内部类型,使测试代码能够像处理普通输入一样处理信号输入。
值设置机制改进
对于值设置,解决方案是使用 Angular 提供的 ComponentRef.setInput() 方法,这是 Angular 为输入信号设计的专用 API。这种方法比直接赋值更符合 Angular 的运行机制,也更能保证测试的准确性。
测试工厂的调整
对于 createHost 和 createDirective 工厂函数,由于它们测试的是子组件/指令,无法直接获取到被测试组件的 ComponentRef,这带来了额外的挑战。经过讨论,决定:
- 移除
setProps方法在这些工厂中的使用 - 强制开发者通过模板设置输入值
- 保持 API 的一致性和简洁性
实际应用示例
现在,测试输入信号组件变得非常简单:
const spectator = createComponent({ props: { show: true } });
对于更复杂的情况,如带有转换器的输入信号:
public dashboardId = input.required<number, string>({ transform: numberAttribute });
测试工具也能够正确处理,确保转换逻辑在测试中得到验证。
总结
ngneat/spectator 对 Angular 输入信号的支持不仅解决了基本的测试需求,还通过以下方式提升了测试体验:
- 保持了与 Angular 运行时行为的一致性
- 提供了完善的类型支持
- 简化了测试 API,使其更加直观
- 支持各种输入信号的高级用法
这一改进使得开发者能够无缝地在项目中使用 Angular 最新的信号特性,同时保持高质量的测试覆盖率。随着 Angular 信号系统的不断完善,ngneat/spectator 也将持续跟进,为开发者提供最佳的测试体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00