Pandas性能优化指南:Cython、Numba与eval的实战应用
2025-05-31 03:13:09作者:范靓好Udolf
概述
在数据分析工作中,Pandas作为Python生态中最受欢迎的数据处理库,其性能优化一直是开发者关注的焦点。本文将深入探讨三种提升Pandas性能的核心技术:Cython扩展、Numba即时编译和pandas.eval表达式评估。通过实际案例演示,您将了解如何将这些技术应用于实际项目,实现数十倍甚至上百倍的性能提升。
性能优化场景分析
假设我们有一个包含1000行数据的DataFrame,需要对每行数据应用一个数值积分函数。在纯Python实现下,这种行级操作往往效率低下:
import pandas as pd
import numpy as np
df = pd.DataFrame({
'a': np.random.randn(1000),
'b': np.random.randn(1000),
'N': np.random.randint(100, 1000, 1000),
'x': 'x'
})
def f(x):
return x * (x - 1)
def integrate_f(a, b, N):
s = 0
dx = (b - a) / N
for i in range(N):
s += f(a + i * dx)
return s * dx
# 纯Python实现,耗时约174ms
%timeit df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
方案一:Cython优化
基础Cython实现
Cython允许我们将Python代码编译为C扩展模块。首先将纯Python函数转换为Cython:
%load_ext Cython
%%cython
def f_plain(x):
return x * (x - 1)
def integrate_f_plain(a, b, N):
s = 0
dx = (b - a) / N
for i in range(N):
s += f_plain(a + i * dx)
return s * dx
仅通过简单转换,性能即可提升约50%,耗时降至85ms左右。
类型声明优化
Cython的关键优势在于静态类型声明。通过明确定义变量类型,可以大幅减少运行时类型检查:
%%cython
cdef double f_typed(double x) except? -2:
return x * (x - 1)
cpdef double integrate_f_typed(double a, double b, int N):
cdef int i
cdef double s, dx
s = 0
dx = (b - a) / N
for i in range(N):
s += f_typed(a + i * dx)
return s * dx
添加类型后,性能提升至约20ms,比原始Python实现快8倍以上。
数组操作优化
避免在循环中创建Pandas Series对象,直接操作NumPy数组:
%%cython
cimport numpy as np
import numpy as np
# 保留之前的类型化函数
cpdef np.ndarray[double] apply_integrate_f(np.ndarray col_a,
np.ndarray col_b,
np.ndarray col_N):
cdef Py_ssize_t i, n = len(col_N)
cdef np.ndarray[double] res = np.empty(n)
for i in range(n):
res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
return res
这种实现方式进一步将执行时间缩短到1.25ms左右,比原始实现快近140倍。
方案二:Numba即时编译
Numba提供了另一种性能优化途径,通过LLVM编译器动态生成机器码。
基本JIT使用
from numba import jit
@jit
def f_plain(x):
return x * (x - 1)
@jit
def integrate_f_numba(a, b, N):
s = 0
dx = (b - a) / N
for i in range(N):
s += f_plain(a + i * dx)
return s * dx
@jit
def apply_integrate_f_numba(col_a, col_b, col_N):
n = len(col_N)
result = np.empty(n)
for i in range(n):
result[i] = integrate_f_numba(col_a[i], col_b[i], col_N[i])
return result
Numba实现通常比Cython更简单,在本例中性能可达798μs,略优于Cython方案。
向量化函数
Numba还支持自动向量化操作:
from numba import vectorize
@vectorize
def double_every_value(x):
return x * 2
# 比df['a'].apply(lambda x: x*2)快约5倍
%timeit df['a_doubled'] = double_every_value(df.a.values)
方案三:pandas.eval表达式评估
对于大型DataFrame的复杂表达式,pandas.eval可以显著提升性能。
基本用法
nrows, ncols = 20000, 100
df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols))
for _ in range(4)]
# 传统Python方式
%timeit df1 + df2 + df3 + df4
# eval方式
%timeit pd.eval('df1 + df2 + df3 + df4')
在大型数组操作上,eval通常有2-10倍的性能提升。
适用场景
eval特别适合以下场景:
- 大型DataFrame的复杂算术运算
- 多条件的布尔运算
- 链式比较操作
# 复杂布尔运算
%timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
%timeit pd.eval('(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)')
技术选型建议
-
Cython最适合:
- 需要极致性能的关键代码段
- 熟悉C/C++语法的开发者
- 需要精细控制内存和类型的场景
-
Numba最适合:
- 希望保持纯Python语法
- 数值计算密集型任务
- 快速原型开发
-
pandas.eval最适合:
- 大型DataFrame的复杂表达式
- 避免中间变量创建的链式操作
- 简单语法实现性能提升
注意事项
- 优化前应先确保算法本身是最优的,避免优化不必要的计算
- 对于小型数据集,这些技术可能反而降低性能
- 每种技术都有其适用场景,应根据具体情况选择
- 建议逐步优化,先验证Python实现,再考虑引入这些加速技术
通过合理应用这三种技术,您可以在Pandas数据分析工作中获得显著的性能提升,特别是在处理大规模数据集时效果更为明显。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
447
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
703
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
684
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
153
51
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
930
82