Pandas性能优化指南:Cython、Numba与eval的实战应用
2025-05-31 05:37:30作者:范靓好Udolf
概述
在数据分析工作中,Pandas作为Python生态中最受欢迎的数据处理库,其性能优化一直是开发者关注的焦点。本文将深入探讨三种提升Pandas性能的核心技术:Cython扩展、Numba即时编译和pandas.eval表达式评估。通过实际案例演示,您将了解如何将这些技术应用于实际项目,实现数十倍甚至上百倍的性能提升。
性能优化场景分析
假设我们有一个包含1000行数据的DataFrame,需要对每行数据应用一个数值积分函数。在纯Python实现下,这种行级操作往往效率低下:
import pandas as pd
import numpy as np
df = pd.DataFrame({
'a': np.random.randn(1000),
'b': np.random.randn(1000),
'N': np.random.randint(100, 1000, 1000),
'x': 'x'
})
def f(x):
return x * (x - 1)
def integrate_f(a, b, N):
s = 0
dx = (b - a) / N
for i in range(N):
s += f(a + i * dx)
return s * dx
# 纯Python实现,耗时约174ms
%timeit df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
方案一:Cython优化
基础Cython实现
Cython允许我们将Python代码编译为C扩展模块。首先将纯Python函数转换为Cython:
%load_ext Cython
%%cython
def f_plain(x):
return x * (x - 1)
def integrate_f_plain(a, b, N):
s = 0
dx = (b - a) / N
for i in range(N):
s += f_plain(a + i * dx)
return s * dx
仅通过简单转换,性能即可提升约50%,耗时降至85ms左右。
类型声明优化
Cython的关键优势在于静态类型声明。通过明确定义变量类型,可以大幅减少运行时类型检查:
%%cython
cdef double f_typed(double x) except? -2:
return x * (x - 1)
cpdef double integrate_f_typed(double a, double b, int N):
cdef int i
cdef double s, dx
s = 0
dx = (b - a) / N
for i in range(N):
s += f_typed(a + i * dx)
return s * dx
添加类型后,性能提升至约20ms,比原始Python实现快8倍以上。
数组操作优化
避免在循环中创建Pandas Series对象,直接操作NumPy数组:
%%cython
cimport numpy as np
import numpy as np
# 保留之前的类型化函数
cpdef np.ndarray[double] apply_integrate_f(np.ndarray col_a,
np.ndarray col_b,
np.ndarray col_N):
cdef Py_ssize_t i, n = len(col_N)
cdef np.ndarray[double] res = np.empty(n)
for i in range(n):
res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
return res
这种实现方式进一步将执行时间缩短到1.25ms左右,比原始实现快近140倍。
方案二:Numba即时编译
Numba提供了另一种性能优化途径,通过LLVM编译器动态生成机器码。
基本JIT使用
from numba import jit
@jit
def f_plain(x):
return x * (x - 1)
@jit
def integrate_f_numba(a, b, N):
s = 0
dx = (b - a) / N
for i in range(N):
s += f_plain(a + i * dx)
return s * dx
@jit
def apply_integrate_f_numba(col_a, col_b, col_N):
n = len(col_N)
result = np.empty(n)
for i in range(n):
result[i] = integrate_f_numba(col_a[i], col_b[i], col_N[i])
return result
Numba实现通常比Cython更简单,在本例中性能可达798μs,略优于Cython方案。
向量化函数
Numba还支持自动向量化操作:
from numba import vectorize
@vectorize
def double_every_value(x):
return x * 2
# 比df['a'].apply(lambda x: x*2)快约5倍
%timeit df['a_doubled'] = double_every_value(df.a.values)
方案三:pandas.eval表达式评估
对于大型DataFrame的复杂表达式,pandas.eval可以显著提升性能。
基本用法
nrows, ncols = 20000, 100
df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols))
for _ in range(4)]
# 传统Python方式
%timeit df1 + df2 + df3 + df4
# eval方式
%timeit pd.eval('df1 + df2 + df3 + df4')
在大型数组操作上,eval通常有2-10倍的性能提升。
适用场景
eval特别适合以下场景:
- 大型DataFrame的复杂算术运算
- 多条件的布尔运算
- 链式比较操作
# 复杂布尔运算
%timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
%timeit pd.eval('(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)')
技术选型建议
-
Cython最适合:
- 需要极致性能的关键代码段
- 熟悉C/C++语法的开发者
- 需要精细控制内存和类型的场景
-
Numba最适合:
- 希望保持纯Python语法
- 数值计算密集型任务
- 快速原型开发
-
pandas.eval最适合:
- 大型DataFrame的复杂表达式
- 避免中间变量创建的链式操作
- 简单语法实现性能提升
注意事项
- 优化前应先确保算法本身是最优的,避免优化不必要的计算
- 对于小型数据集,这些技术可能反而降低性能
- 每种技术都有其适用场景,应根据具体情况选择
- 建议逐步优化,先验证Python实现,再考虑引入这些加速技术
通过合理应用这三种技术,您可以在Pandas数据分析工作中获得显著的性能提升,特别是在处理大规模数据集时效果更为明显。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178