Metric3D深度估计模型在NYU和KITTI数据集上的性能差异分析
2025-07-08 11:28:19作者:谭伦延
在深度估计领域,Metric3D项目提出了创新的跨尺度转换模块(CSTM),在NYU Depth V2和KITTI等标准数据集上取得了显著成果。本文重点分析该项目在不同评估指标下表现出的性能差异,帮助研究人员更好地理解模型评估方法对结果的影响。
评估指标差异的核心原因
Metric3D在论文表格1和表格4中报告的NYU数据集δ1指标存在明显差异:
- 表格1中CSTM_image和CSTM_label的δ1分别为0.925和0.944
- 表格4中相同模型的δ1提升至0.963和0.966
这种差异并非来自模型架构或训练过程的改变,而是源于两种不同的深度评估方法:
-
绝对深度评估(表格1):
- 直接比较预测深度值与真实深度值
- 反映模型对场景绝对尺度(metric scale)的预测能力
- 更接近实际应用场景需求
-
相对/仿射不变深度评估(表格4):
- 通过线性变换对齐预测值和真实值的中位数
- 仅评估深度关系的相对准确性
- 消除尺度不确定性带来的影响
技术背景解析
在单目深度估计领域,模型预测的深度通常存在尺度模糊性。为解决这一问题,研究人员常采用两种评估策略:
-
仿射对齐方法:
- 计算预测深度和真实深度之间的最优尺度和平移参数
- 对预测结果进行线性变换后再评估
- 重点关注深度排序和相对关系的准确性
-
绝对尺度评估:
- 保持预测结果的原始尺度
- 评估模型对真实物理距离的预测能力
- 对机器人导航、增强现实等应用更为重要
Metric3D项目通过CSTM模块同时提升了两种评估方式下的性能,表明其不仅能学习场景的几何结构,还能准确预测绝对深度尺度。
对研究实践的启示
这一差异提醒我们在比较不同深度估计方法时需要注意:
- 明确评估协议是否包含尺度对齐
- 根据应用场景选择合适的评估指标
- 在学术论文中应明确说明采用的评估方法
Metric3D项目在两种评估方式下都展现了优越性能,证明了其在深度估计任务中的全面能力。未来工作可以进一步探索如何在不损失绝对尺度预测能力的前提下,提升相对深度关系的准确性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134