基于范围图像的激光雷达分割:高效、精准的3D点云处理工具
项目介绍
LIDAR-Segmentation-Based-on-Range-Image 是一个基于范围图像(Range Image)的激光雷达分割方法。该项目通过将3D点云数据转换为2D范围图像,并结合多种先进的分割算法,实现了对激光雷达数据的快速、高效分割。无论是自动驾驶、机器人导航还是环境感知,该项目都能提供强大的支持。
项目技术分析
核心技术
-
地面移除方法:基于 "D. Zermas, I. Izzat and N. Papanikolopoulos, "Fast segmentation of 3D point clouds: A paradigm on LiDAR data for autonomous vehicle applications," 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017" 的研究成果,采用多平面拟合技术,有效移除地面点云。
-
扫描线补偿方法:借鉴 "P. Burger and H. Wuensche, "Fast Multi-Pass 3D Point Segmentation Based on a Structured Mesh Graph for Ground Vehicles," 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, 2018" 的方法,对扫描线进行补偿,提高分割精度。
-
范围图像分割方法:采用 "I. Bogoslavskyi and C. Stachniss, "Fast range image-based segmentation of sparse 3D laser scans for online operation," 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016" 的快速范围图像分割技术,实现实时操作。
-
分割流程:参考 "K. Klasing, D. Wollherr and M. Buss, "A clustering method for efficient segmentation of 3D laser data," 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, 2008" 的聚类方法,优化分割流程。
-
阈值方法:基于 "Borges, G.A., Aldon, MJ. Line Extraction in 2D Range Images for Mobile Robotics. Journal of Intelligent and Robotic Systems 40, 267–297 (2004)" 的阈值技术,提高分割的准确性。
代码实现
项目代码参考了多个开源项目,如 plane_fit_ground_filter 和 CppRBNN,并在此基础上进行了优化和改进。
项目及技术应用场景
应用场景
-
自动驾驶:在自动驾驶系统中,准确分割激光雷达数据是实现环境感知和路径规划的关键。该项目能够快速、准确地分割出道路、障碍物等关键信息,为自动驾驶提供可靠的数据支持。
-
机器人导航:在机器人导航中,点云分割可以帮助机器人识别环境中的物体和障碍物,从而实现自主避障和路径规划。
-
环境感知:在环境感知应用中,如智能监控、无人机避障等,该项目能够提供高效的点云分割解决方案,帮助系统快速识别和处理环境信息。
项目特点
高效性
项目采用范围图像技术,将3D点云数据转换为2D图像进行处理,大大提高了计算效率。结合多种先进的分割算法,能够在保证精度的同时,实现实时处理。
精准性
通过多平面拟合、扫描线补偿等技术,项目能够有效去除地面点云,并对点云数据进行精准分割。阈值方法的引入进一步提高了分割的准确性。
灵活性
项目代码结构清晰,易于扩展和修改。用户可以根据具体需求,对算法进行定制化调整,满足不同应用场景的需求。
开源性
作为一个开源项目,LIDAR-Segmentation-Based-on-Range-Image 欢迎全球开发者参与贡献。通过社区的力量,不断优化和完善项目,使其在更多领域发挥作用。
结语
LIDAR-Segmentation-Based-on-Range-Image 是一个集高效、精准、灵活于一体的激光雷达分割工具。无论你是自动驾驶开发者、机器人工程师,还是环境感知研究人员,该项目都能为你提供强大的技术支持。赶快加入我们,体验这一前沿技术的魅力吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00