Dragonwell8项目中ParallelScavenge垃圾回收器与JFR事件的内存问题分析
2025-06-14 20:10:53作者:傅爽业Veleda
问题背景
在Dragonwell8项目测试过程中,发现了一个与Parallel Scavenge垃圾回收器和JFR(Java Flight Recorder)事件相关的内存问题。该问题表现为在运行TestPromotionFailedEventWithParallelScavenge测试用例时,偶尔会出现JVM崩溃的情况,错误信息指向libc.so.6库中的__strlen_mte函数。
问题现象
测试用例运行时,JVM会抛出SIGSEGV信号导致崩溃,错误栈显示问题发生在libc.so.6库的字符串长度计算函数中。同时伴随有内存不足的错误提示,表明在垃圾回收过程中可能出现了内存分配失败的情况。
技术分析
Parallel Scavenge回收器特点
Parallel Scavenge是JVM中的一种新生代垃圾回收器,它采用并行标记-复制算法,主要关注吞吐量优化。在内存分配失败时,会触发"Promotion Failed"事件,这正是测试用例试图验证的场景。
JFR事件记录机制
JFR是Java平台的低开销事件记录系统,可以捕获各种JVM和应用程序事件。测试用例试图验证在Parallel Scavenge回收器下,当发生晋升失败(Promotion Failed)时,JFR能否正确记录相关事件。
问题根源
经过分析,问题的根本原因在于:
- 在内存压力测试场景下,JVM尝试分配内存失败
- 在记录JFR事件时,字符串处理过程中出现了内存访问越界
- libc.so.6库的字符串处理函数在异常情况下崩溃
解决方案
针对这一问题,开发团队进行了以下修复:
- 增强了JFR事件记录时的内存访问安全检查
- 优化了Parallel Scavenge回收器在内存不足时的错误处理流程
- 改进了测试用例的内存使用模式,使其更稳定地触发目标事件
技术启示
这个案例为我们提供了几个重要的技术启示:
- 垃圾回收器的实现需要特别注意内存不足场景下的健壮性
- JFR事件记录系统需要处理各种极端情况,包括内存分配失败
- 性能测试用例设计时需要考虑系统稳定性,避免过度消耗资源
结论
通过对这一问题的分析和修复,Dragonwell8项目在Parallel Scavenge回收器和JFR事件记录系统的稳定性方面得到了提升。这也提醒开发者在设计内存敏感型功能时,需要充分考虑各种边界条件和异常场景,确保系统的鲁棒性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K