ChatTTS项目在Mac M1/M2/M3芯片上的运行问题分析与解决方案
ChatTTS作为一款开源的文本转语音工具,在Mac设备上运行时可能会遇到一些兼容性问题。本文将深入分析这些问题的根源,并提供有效的解决方案。
问题现象分析
当用户在搭载Apple M系列芯片(M1/M2/M3)的Mac设备上运行ChatTTS时,主要会出现两类错误提示:
-
核心运行时错误:在执行
wavs = chat.infer(texts, use_decoder=True)时,系统抛出RuntimeError,提示INTERNAL ASSERT FAILED错误,具体指向PyTorch的二进制内核操作问题。 -
持续警告信息:运行过程中不断输出关于
torch._dynamo.convert_frame的警告,最终显示Device mps not supported的错误信息。
技术背景解析
这些问题的根源在于PyTorch框架对Apple M系列芯片的Metal Performance Shaders(MPS)后端支持尚不完善:
-
MPS后端限制:PyTorch的MPS后端目前对某些复杂运算(特别是涉及复数类型的操作)支持不完整,导致在音频处理流程中出现断言失败。
-
编译优化冲突:PyTorch的动态图编译优化(torch.compile)与MPS后端存在兼容性问题,无法正确生成针对M1/M2/M3芯片优化的代码。
解决方案
针对上述问题,我们推荐以下几种解决方案:
方案一:禁用动态编译优化
在初始化ChatTTS时,添加以下配置可避免大部分问题:
import torch
torch._dynamo.config.suppress_errors = True
方案二:强制使用CPU计算
虽然性能会有所下降,但可以确保稳定性:
import os
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
方案三:使用特定版本的PyTorch
某些PyTorch版本对MPS支持更稳定,可以尝试:
pip install torch==2.1.0
性能优化建议
对于希望在Mac设备上获得更好性能的用户:
- 使用较小的batch size以减少内存压力
- 考虑使用半精度(fp16)计算
- 监控GPU内存使用情况,适当调整模型参数
未来展望
随着PyTorch对MPS后端支持的不断完善,预计这些问题将在未来的版本中得到解决。开发团队也在积极优化代码,以更好地适配Apple Silicon芯片。
对于技术爱好者,可以关注PyTorch的官方更新日志,及时了解MPS后端的改进情况。同时,ChatTTS项目团队也在持续优化模型架构,以提供更好的跨平台支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00