ChatTTS项目在Mac M1/M2/M3芯片上的运行问题分析与解决方案
ChatTTS作为一款开源的文本转语音工具,在Mac设备上运行时可能会遇到一些兼容性问题。本文将深入分析这些问题的根源,并提供有效的解决方案。
问题现象分析
当用户在搭载Apple M系列芯片(M1/M2/M3)的Mac设备上运行ChatTTS时,主要会出现两类错误提示:
-
核心运行时错误:在执行
wavs = chat.infer(texts, use_decoder=True)时,系统抛出RuntimeError,提示INTERNAL ASSERT FAILED错误,具体指向PyTorch的二进制内核操作问题。 -
持续警告信息:运行过程中不断输出关于
torch._dynamo.convert_frame的警告,最终显示Device mps not supported的错误信息。
技术背景解析
这些问题的根源在于PyTorch框架对Apple M系列芯片的Metal Performance Shaders(MPS)后端支持尚不完善:
-
MPS后端限制:PyTorch的MPS后端目前对某些复杂运算(特别是涉及复数类型的操作)支持不完整,导致在音频处理流程中出现断言失败。
-
编译优化冲突:PyTorch的动态图编译优化(torch.compile)与MPS后端存在兼容性问题,无法正确生成针对M1/M2/M3芯片优化的代码。
解决方案
针对上述问题,我们推荐以下几种解决方案:
方案一:禁用动态编译优化
在初始化ChatTTS时,添加以下配置可避免大部分问题:
import torch
torch._dynamo.config.suppress_errors = True
方案二:强制使用CPU计算
虽然性能会有所下降,但可以确保稳定性:
import os
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
方案三:使用特定版本的PyTorch
某些PyTorch版本对MPS支持更稳定,可以尝试:
pip install torch==2.1.0
性能优化建议
对于希望在Mac设备上获得更好性能的用户:
- 使用较小的batch size以减少内存压力
- 考虑使用半精度(fp16)计算
- 监控GPU内存使用情况,适当调整模型参数
未来展望
随着PyTorch对MPS后端支持的不断完善,预计这些问题将在未来的版本中得到解决。开发团队也在积极优化代码,以更好地适配Apple Silicon芯片。
对于技术爱好者,可以关注PyTorch的官方更新日志,及时了解MPS后端的改进情况。同时,ChatTTS项目团队也在持续优化模型架构,以提供更好的跨平台支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00