ScalaJack 开源项目教程
1. 项目介绍
ScalaJack 是一个为 Scala 设计的快速、无缝的序列化引擎,专门用于非模式数据。它旨在在序列化类时需要尽可能少的额外代码。ScalaJack 目前仅支持 JSON 格式,但是在对其添加 MsgPack 支持的尝试中,发现 MsgPack 序列化的写入性能比 JSON 慢约 25%,读取性能慢约 45%,因此目前 ScalaJack 仍然使用 JSON 格式。
ScalaJack 8 是基于 Scala 3 的全新序列化器实现,它使用 Scala 3 宏来在编译时生成所有序列化代码,大大提高了性能。
2. 项目快速启动
在开始使用 ScalaJack 之前,首先需要将依赖项添加到你的 build.sbt 文件中:
libraryDependencies ++= Seq("co.blocke" %% "scalajack" % "SJ_VERSION")
确保将 SJ_VERSION 替换为最新的 ScalaJack 版本。
接下来,让我们在项目中使用 ScalaJack 来序列化和反序列化一个案例类对象:
首先,定义一个案例类:
// File1.scala
case class Person(name: String, age: Int)
然后,创建一个可重用的 Person 编码器:
// File2.scala
import co.blocke.scalajack.*
given sjPerson: ScalaJack[Person] = sjCodecOf[Person]
现在,可以使用该编码器来序列化和反序列化 Person 对象:
val inst = Person("Mike", 34)
val js = sjPerson.toJson(inst)
// 输出: """{"name":"Mike","age":34}"""
val person = sjPerson.fromJson(js)
// person 将是原始的 Person 对象
3. 应用案例和最佳实践
案例类和特质支持
ScalaJack 支持案例类和特质的序列化和反序列化。例如:
case class Dog(name: String, numLegs: Int)
case class Person(name: String, age: Int, dog: Dog)
given sjPerson: ScalaJack[Person] = sjCodecOf[Person]
在这个例子中,ScalaJack 会自动检测并生成 Dog 类的编码器。
自定义编码器
ScalaJack 允许用户提供自定义编码器,以便覆盖默认行为。例如:
given customCodec: ScalaJack[YourClass] = ???
性能优化
ScalaJack 8 使用 Scala 3 宏来生成序列化代码,这大大提高了性能。但是,使用宏会影响编译和测试周期,因为当你在案例类中添加新字段时,不仅需要重新编译包含该类的文件,还需要重新编译使用该类的任何宏。
4. 典型生态项目
ScalaJack 是 Scala 社区中广泛使用的一个库,它与其他开源项目有着良好的集成。以下是一些与 ScalaJack 兼容的典型生态项目:
- Play Framework: ScalaJack 可以与 Play Framework 一起使用,为 Web 应用程序提供 JSON 序列化和反序列化。
- Akka HTTP: ScalaJack 可以用于 Akka HTTP 服务中的 JSON 数据处理。
- MongoDB: ScalaJack 可以与 MongoDB 驱动程序一起使用,以处理存储和检索 JSON 格式的数据。
通过以上介绍,您应该能够开始使用 ScalaJack 并将其集成到您的 Scala 项目中。遵循最佳实践,您可以确保项目的性能和可维护性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00