Python-Websockets 中消息发送延迟问题的分析与解决
2025-06-07 19:37:24作者:晏闻田Solitary
问题现象描述
在使用 Python-Websockets 库开发 WebSocket 服务器时,开发者遇到了一个有趣的现象:当服务器处理耗时计算任务时,客户端接收消息会出现延迟。具体表现为:
- 客户端发送初始请求
- 服务器遍历列表(示例中列表长度为3)
- 服务器执行耗时计算(可能持续数秒)
- 服务器为每个元素发送文本消息
- 服务器发送最终关闭消息
异常现象是:第一条消息能立即到达客户端,但后续两条消息会同时到达,尽管它们在服务器端是以数秒间隔发送的。
问题根源分析
这种现象的根源在于 Python 异步编程模型中的事件循环阻塞问题。当服务器执行耗时计算时,如果没有正确释放事件循环的控制权,会导致整个事件循环被阻塞。具体来说:
- 计算密集型任务会独占事件循环
- 即使使用
asyncio.create_task也不足以解决阻塞问题 - WebSocket 的发送操作需要事件循环来处理网络I/O
- 被阻塞的事件循环无法及时处理发送队列中的消息
解决方案
针对这一问题,我们有两种有效的解决方案:
方案一:显式释放事件循环控制权
在发送消息后立即使用 await 语句,强制事件循环处理挂起的I/O操作:
await ws.send(data)
这种方法简单直接,适用于发送间隔较短的场景。
方案二:使用Ping-Pong机制
通过发送Ping并等待Pong响应来强制事件循环处理:
pong_waiter = await ws.ping()
latency = await pong_waiter
这种方法不仅能解决发送延迟问题,还能顺便检测连接的健康状态。
最佳实践:使用线程池执行阻塞操作
对于长时间运行的阻塞操作,推荐使用 ThreadPoolExecutor 和 run_in_executor:
import asyncio
from concurrent.futures import ThreadPoolExecutor
async def handle_request(ws):
loop = asyncio.get_event_loop()
with ThreadPoolExecutor() as pool:
# 将阻塞操作放到线程池中执行
result = await loop.run_in_executor(pool, blocking_function)
await ws.send(result)
这种方法将计算密集型任务转移到单独的线程中执行,完全避免了阻塞事件循环的问题。
技术原理深入
Python 的异步编程模型基于协程和事件循环。事件循环在同一时间只能执行一个任务,当遇到阻塞操作时:
- 如果是I/O密集型任务,可以使用
await挂起当前协程,让事件循环处理其他任务 - 如果是CPU密集型任务,会阻塞整个事件循环,导致其他协程无法执行
WebSockets 库的网络操作依赖于事件循环,因此当事件循环被阻塞时,即使调用了发送方法,消息也会堆积在发送缓冲区中,直到事件循环重新获得控制权才能被实际发送。
性能优化建议
- 合理划分任务:将长时间运行的任务拆分为多个小任务,中间插入
await asyncio.sleep(0)让出控制权 - 监控事件循环延迟:可以使用
loop.time()测量事件循环的实际延迟情况 - 资源隔离:考虑将计算密集型任务部署到单独的服务中,通过RPC或消息队列与WebSocket服务通信
- 负载测试:使用工具模拟高并发场景,确保解决方案在实际负载下表现良好
总结
在基于 Python-Websockets 开发实时应用时,正确处理长时间运行的任务至关重要。理解异步编程模型和事件循环的工作原理,能够帮助我们设计出更高效、更可靠的服务。对于计算密集型任务,推荐使用线程池隔离;对于需要精细控制发送时序的场景,可以使用显式的控制权释放机制。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669