探索Nak:Scala/Java界的一颗机器学习明珠
2024-09-21 05:00:23作者:田桥桑Industrious
一、项目介绍
Nak 是一个基于 Scala/Java 开发的机器学习库,致力于提供一些标准算法的易用 API。它是由 Breeze、Liblinear Java 和 Scalabha 项目融合演化而来,目前正处于快速发展和完善的阶段,项目社区欢迎更多贡献者的加入。
二、项目技术分析
Nak 作为一个功能丰富的机器学习库,它集成了 k-means 聚类算法、逻辑回归和支撑向量机等监督学习方法。在最新版本 1.2.1 中,Nak 将 breeze-learn 的相关功能纳入其中,并优化了算法实现,如合并了 breeze-learn 和 Nak 中的 K-means 实现,同时新增了局部敏感哈希算法。
Nak 的构建依赖于 SBT 或 Maven 等构建工具,支持依赖管理和项目自动化构建。
三、项目及技术应用场景
Nak 的设计目标是让开发者能够更加便捷地实现机器学习相关任务。无论是文本分类、图像识别还是其他数据挖掘任务,Nak 都提供了相应的算法支持。以下是一个使用 Nak 进行文本分类的简单示例:
def main(args: Array[String]) {
// ... 文件和停止词设置
val trainingExamples = fromLabeledDirs(trainDir).toList
val config = LiblinearConfig(cost=5.0)
val featurizer = new BowFeaturizer(stopwords)
val classifier = trainClassifier(config, featurizer, trainingExamples)
// ... 测试与评估
}
在上述代码中,开发者通过简单的几步操作就可以训练一个文本分类器,并对其进行评估。
四、项目特点
-
简洁的API设计:Nak 专注于提供简单易用的API,降低机器学习算法的使用门槛。
-
算法丰富:包含多种聚类和监督学习方法,满足不同场景的需求。
-
社区活跃:项目正在积极开发中,社区欢迎贡献者的加入,共同推动项目进步。
-
文档支持:尽管目前文档还不够完善,但项目社区正在努力提供更详尽的文档支持。
Nak 作为一颗正在崛起的机器学习库,它的轻量级设计和易用性使其在 Scala/Java 社区中备受瞩目。不论您是机器学习的新手还是有经验的研究者,Nak 都值得您尝试和探索。加入 Nak 的社区,让我们一起推动开源机器学习的发展!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147