Spring AI项目中Chat Memory流式处理的技术解析与最佳实践
2025-06-10 19:21:50作者:宣海椒Queenly
流式处理中的常见误区
在Spring AI项目中使用Chat Memory功能时,开发者可能会遇到一个典型的技术问题:当启用流式处理模式(streaming mode)时,系统抛出"No StreamAdvisors available to execute"异常,而非流式模式却能正常运行。这种现象往往源于对响应式编程模型的理解不足。
问题本质分析
这个问题的核心在于响应式编程中Flux对象的订阅机制。在原始问题场景中,开发者对同一个Flux对象执行了两次订阅操作:
- 通过subscribe()方法注册消费者
- 随后又调用blockLast()方法
这种双重订阅会导致Spring AI内部的DefaultAroundAdvisorChain组件被重复执行。当PromptChatMemoryAdvisor和ChatModelStreamAdvisor完成正常的adviseStream处理后,DefaultAroundAdvisorChain的nextStream方法会被错误地再次调用,此时已经没有可用的StreamAdvisor,从而抛出异常。
技术解决方案
正确的处理方式应该是采用单一订阅模式,通过操作符链式处理响应流:
chatResponseFlux
.doOnNext(chatResponse -> {
// 处理每条响应
AssistantMessage message = chatResponse.getResult().getOutput();
System.out.print(message.getText());
})
.doOnError(error -> System.err.println("处理异常: " + error.getMessage()))
.doOnComplete(() -> System.out.println("\n处理完成"))
.blockLast();
最佳实践建议
- 单一订阅原则:对于任何响应式流,都应保持单一订阅,避免重复消费
- 操作符组合:利用doOnNext、doOnError等操作符构建处理管道
- 资源管理:在流结束时使用doOnComplete进行资源清理
- 异常处理:始终包含doOnError处理可能的异常情况
技术深度解析
Spring AI的流式处理架构基于Project Reactor实现,其核心是响应式编程范式。Chat Memory功能通过Advisor链模式实现,其中:
- PromptChatMemoryAdvisor负责维护对话历史
- ChatModelStreamAdvisor处理模型流式输出
- DefaultAroundAdvisorChain管理advisor执行顺序
理解这一架构有助于开发者正确使用API,避免因不当操作导致的状态异常。
总结
通过本文的分析,开发者应该认识到响应式编程中订阅机制的重要性。在Spring AI项目中使用Chat Memory的流式功能时,遵循单一订阅原则和正确的操作符组合是保证功能正常的关键。这不仅解决了"No StreamAdvisors"异常问题,也为构建健壮的AI应用奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896