Spring AI项目中Chat Memory流式处理的技术解析与最佳实践
2025-06-10 23:56:17作者:宣海椒Queenly
流式处理中的常见误区
在Spring AI项目中使用Chat Memory功能时,开发者可能会遇到一个典型的技术问题:当启用流式处理模式(streaming mode)时,系统抛出"No StreamAdvisors available to execute"异常,而非流式模式却能正常运行。这种现象往往源于对响应式编程模型的理解不足。
问题本质分析
这个问题的核心在于响应式编程中Flux对象的订阅机制。在原始问题场景中,开发者对同一个Flux对象执行了两次订阅操作:
- 通过subscribe()方法注册消费者
- 随后又调用blockLast()方法
这种双重订阅会导致Spring AI内部的DefaultAroundAdvisorChain组件被重复执行。当PromptChatMemoryAdvisor和ChatModelStreamAdvisor完成正常的adviseStream处理后,DefaultAroundAdvisorChain的nextStream方法会被错误地再次调用,此时已经没有可用的StreamAdvisor,从而抛出异常。
技术解决方案
正确的处理方式应该是采用单一订阅模式,通过操作符链式处理响应流:
chatResponseFlux
.doOnNext(chatResponse -> {
// 处理每条响应
AssistantMessage message = chatResponse.getResult().getOutput();
System.out.print(message.getText());
})
.doOnError(error -> System.err.println("处理异常: " + error.getMessage()))
.doOnComplete(() -> System.out.println("\n处理完成"))
.blockLast();
最佳实践建议
- 单一订阅原则:对于任何响应式流,都应保持单一订阅,避免重复消费
- 操作符组合:利用doOnNext、doOnError等操作符构建处理管道
- 资源管理:在流结束时使用doOnComplete进行资源清理
- 异常处理:始终包含doOnError处理可能的异常情况
技术深度解析
Spring AI的流式处理架构基于Project Reactor实现,其核心是响应式编程范式。Chat Memory功能通过Advisor链模式实现,其中:
- PromptChatMemoryAdvisor负责维护对话历史
- ChatModelStreamAdvisor处理模型流式输出
- DefaultAroundAdvisorChain管理advisor执行顺序
理解这一架构有助于开发者正确使用API,避免因不当操作导致的状态异常。
总结
通过本文的分析,开发者应该认识到响应式编程中订阅机制的重要性。在Spring AI项目中使用Chat Memory的流式功能时,遵循单一订阅原则和正确的操作符组合是保证功能正常的关键。这不仅解决了"No StreamAdvisors"异常问题,也为构建健壮的AI应用奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1