DGL项目中基于磁盘的特征存储与CPU缓存优化技术解析
2025-05-15 22:45:33作者:何举烈Damon
背景与挑战
在深度学习图神经网络应用中,处理大规模图数据时经常会遇到特征数据无法完全载入内存的情况。传统的解决方案包括使用基于磁盘的特征存储或操作系统提供的mmap内存映射技术,但这些方法都存在明显的性能瓶颈。
现有技术方案分析
当前DGL项目中有两种主要的特征存储方式:
- TorchBasedFeature:使用PyTorch张量存储特征,支持in_memory=False模式,依赖操作系统自动缓存
- DiskBasedFeature:直接基于磁盘存储,使用io_uring进行高效I/O操作
操作系统级别的缓存存在几个关键问题:
- 缓存粒度固定为4KB页面大小,而特征数据通常远小于这个尺寸
- 缓存策略不够智能,会缓存不必要的数据
- mmap方式需要更多线程才能饱和SSD带宽
创新解决方案
DGL团队提出了基于io_uring和应用程序级缓存的优化方案:
-
io_uring优势:
- 支持批量提交I/O请求,减少系统调用开销
- 使用更少线程即可达到SSD带宽上限
- 提供更直接的I/O控制能力
-
智能缓存设计:
- 采用S3-FIFO等先进缓存淘汰算法
- 实现细粒度的特征级别缓存
- 支持并行缓存访问
技术实现细节
团队对多种缓存方案进行了深入评估:
-
缓存淘汰策略对比:
- S3-FIFO相比传统LRU有更高的命中率
- 虽然S3-FIFO时间开销略高,但综合性能更优
- 其他淘汰策略性能明显落后
-
缓存库选型:
- cachelib性能最佳,但因ABI兼容问题无法与Torch共用
- cachetools和cachemoncache等库性能不足
基于这些发现,团队决定自主实现并行化的S3-FIFO缓存方案,该实现具有以下特点:
- 模块化设计,便于扩展支持更多缓存策略
- 针对图特征访问模式优化
- 与DiskBasedFeature深度集成
应用价值
这项优化技术为处理超大规模图数据提供了关键支持:
- 显著降低磁盘I/O压力
- 提高特征访问效率
- 使在有限内存环境下处理大规模图数据成为可能
- 为后续性能优化奠定基础
未来展望
随着图数据规模的持续增长,特征存储与访问优化仍将是重点研究方向。DGL团队将持续优化缓存策略,探索更高效的I/O模式,并考虑异构计算环境下的缓存管理方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134