RegTR 开源项目使用教程
2024-09-20 12:53:11作者:宣利权Counsellor
1. 项目介绍
RegTR(REGTR: End-to-end Point Cloud Correspondences with Transformers)是一个用于点云配准的开源项目。该项目利用多个Transformer注意力层直接预测每个下采样点的对应位置,从而实现端到端的点云配准。与传统的基于对应关系的配准算法不同,RegTR预测的对应关系是干净的,不需要额外的RANSAC步骤,从而实现了快速且准确的配准。
2. 项目快速启动
2.1 环境准备
首先,确保你的环境中已经安装了以下依赖:
- Python 3.8.8
- PyTorch 1.9.1 with torchvision 0.10.1 (Cuda 11.1)
- PyTorch3D 0.6.0
- MinkowskiEngine 0.5.4
其他依赖可以通过以下命令安装:
pip install -r src/requirements.txt
2.2 数据准备
按照以下步骤下载并准备数据集:
- 下载处理后的数据集,并将其放置在
data/目录下。 - 为了提高效率,建议预先计算重叠点(用于计算重叠损失)。可以通过以下命令完成:
python data_processing/compute_overlap_3dmatch.py
2.3 模型训练
使用以下命令训练模型:
# 训练3DMatch数据集
python train.py --config conf/3dmatch.yaml
# 训练ModelNet数据集
python train.py --config conf/modelnet.yaml
2.4 模型评估
使用以下命令进行模型评估:
# 评估3DMatch数据集
python test.py --dev --resume path/to/trained_models/3dmatch/ckpt/model-best.pth --benchmark 3DMatch
# 评估ModelNet数据集
python test.py --dev --resume path/to/trained_models/modelnet/ckpt/model-best.pth --benchmark ModelNet
3. 应用案例和最佳实践
3.1 应用案例
RegTR在多个领域都有广泛的应用,包括但不限于:
- 机器人导航:通过点云配准实现环境地图的构建和更新。
- 自动驾驶:用于实时点云数据的配准,提高环境感知的准确性。
- 三维重建:通过点云配准实现高精度的三维模型重建。
3.2 最佳实践
- 数据预处理:确保输入的点云数据经过适当的预处理,如去噪、下采样等。
- 超参数调优:根据具体应用场景调整模型的超参数,以获得最佳的配准效果。
- 模型优化:使用GPU加速训练和推理过程,提高效率。
4. 典型生态项目
RegTR作为一个开源项目,与其他点云处理和深度学习项目有良好的兼容性。以下是一些典型的生态项目:
- Open3D:一个用于三维数据处理的开源库,支持点云数据的读取、可视化和基本处理。
- PyTorch3D:一个用于三维深度学习的PyTorch扩展库,提供了丰富的三维数据处理工具。
- MinkowskiEngine:一个用于稀疏卷积的开源库,适用于处理大规模点云数据。
通过结合这些生态项目,可以进一步扩展RegTR的功能和应用场景。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896