OneTrainer中Stable Cascade微调模型的使用方法解析
概述
在使用OneTrainer对Stable Cascade模型进行微调训练后,用户通常会得到两个模型文件:stage_c.safetensors(约7GB)和text_encoder.safetensors(约1.5GB)。这与ComfyUI工作流中常见的9GB单一模型文件格式有所不同,导致部分用户在使用时遇到困惑。本文将详细介绍这两种模型文件的使用方法。
模型文件解析
OneTrainer训练Stable Cascade模型后会生成两个独立的模型文件:
-
stage_c.safetensors:这是模型的主要生成部分,负责图像的实际生成过程,文件大小约为7GB。
-
text_encoder.safetensors:这是文本编码器部分,负责将输入的文本提示转换为模型可以理解的嵌入表示,文件大小约为1.5GB。
这种分离的设计实际上提供了更大的灵活性,允许用户单独替换或更新文本编码器或生成器部分。
ComfyUI中的使用方法
在ComfyUI中,可以通过以下方式使用这两个分离的模型文件:
-
文本编码器部分:将text_encoder.safetensors加载到CLIP文本编码器节点中。
-
生成器部分:将stage_c.safetensors加载到UNET节点中。
这种分离加载的方式与ComfyUI的模块化设计理念完美契合,实际上提供了比单一模型文件更大的灵活性。用户可以根据需要混合搭配不同的文本编码器和生成器组合。
技术优势
使用分离的模型文件具有以下优势:
-
模块化更新:可以单独更新文本理解能力或图像生成能力,而无需重新训练整个模型。
-
资源优化:在只需要调整文本编码器或生成器其中一部分时,可以节省训练资源。
-
实验灵活性:便于进行不同文本编码器和生成器的组合实验。
实际应用建议
对于希望获得类似单一文件效果的用户,可以考虑以下方案:
-
使用模型合并工具将两个文件合并(但会失去模块化优势)。
-
创建自定义ComfyUI工作流,直接使用两个分离的文件。
-
在OneTrainer中检查是否有导出单一文件的选项(某些版本可能支持)。
总结
OneTrainer生成的分离式Stable Cascade模型文件实际上代表了更先进的模块化设计理念。虽然与常见的单一文件格式不同,但这种分离为高级用户提供了更大的灵活性和控制力。通过ComfyUI的模块化工作流,可以充分发挥这种分离式设计的优势,实现更精细的生成控制。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00