Google Auth Library Node.js 中如何从 ExternalAccountClient 获取 GoogleAuth 对象
在 Google Cloud 开发中,我们经常需要在不同服务之间进行身份验证。本文将详细介绍如何在 Node.js 环境中,使用 google-auth-library 库从 ExternalAccountClient 获取 GoogleAuth 对象,以便与 Cloud Run 后端服务进行安全通信。
背景知识
Google Auth Library 提供了多种身份验证方式,其中 ExternalAccountClient 是一种特殊类型的客户端,用于处理外部身份提供者的认证流程。而 GoogleAuth 是一个更高级别的抽象,可以包装各种 AuthClient 实现。
解决方案
方法一:使用 fromJSON 直接创建 GoogleAuth
最直接的方式是使用 GoogleAuth.fromJSON() 方法,该方法可以直接接收与 ExternalAccountClient.fromJSON() 相同的配置参数:
const {GoogleAuth} = require('google-auth-library');
const auth = GoogleAuth.fromJSON({
type: "external_account",
audience: `//iam.googleapis.com/projects/${GCP_PROJECT_NUMBER}/locations/global/workloadIdentityPools/${GCP_WORKLOAD_IDENTITY_POOL_ID}/providers/${GCP_WORKLOAD_IDENTITY_POOL_PROVIDER_ID}`,
subject_token_type: "urn:ietf:params:oauth:token-type:jwt",
token_url: "https://sts.googleapis.com/v1/token",
service_account_impersonation_url: `https://iamcredentials.googleapis.com/v1/projects/-/serviceAccounts/${GCP_SERVICE_ACCOUNT_EMAIL}:generateAccessToken`,
subject_token_supplier: {
getSubjectToken: getVercelOidcToken,
}
});
方法二:将 ExternalAccountClient 传递给 GoogleAuth
如果你已经创建了 ExternalAccountClient 实例,可以直接将其传递给 GoogleAuth 构造函数:
const {GoogleAuth, ExternalAccountClient} = require('google-auth-library');
const authClient = ExternalAccountClient.fromJSON({
// 配置参数同上
});
const auth = new GoogleAuth({
authClient: authClient,
scopes: "https://www.googleapis.com/auth/cloud-platform",
projectId: GCP_PROJECT_ID
});
获取 ID Token 访问 Cloud Run
获取到 GoogleAuth 实例后,就可以轻松获取 ID Token 来访问受保护的 Cloud Run 服务:
const idTokenClient = await auth.getIdTokenClient(backend_url);
const response = await idTokenClient.request({url: backend_url});
最佳实践
-
环境变量管理:建议将 GCP_PROJECT_NUMBER、GCP_WORKLOAD_IDENTITY_POOL_ID 等配置信息存储在环境变量中,而不是硬编码在代码里。
-
错误处理:添加适当的错误处理逻辑,特别是在获取和刷新令牌时。
-
令牌缓存:GoogleAuth 会自动管理令牌的缓存和刷新,无需手动处理。
-
最小权限原则:只为服务账户授予必要的最小权限,而不是使用过于宽泛的权限。
总结
通过上述方法,我们可以在 Node.js 应用中灵活地使用 ExternalAccountClient 和 GoogleAuth 来实现安全的服务间通信。这种方法特别适合在无服务器环境(如 Vercel)中与 Google Cloud 服务进行集成,既保证了安全性,又简化了身份验证流程。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00