Google Auth Library Node.js 中如何从 ExternalAccountClient 获取 GoogleAuth 对象
在 Google Cloud 开发中,我们经常需要在不同服务之间进行身份验证。本文将详细介绍如何在 Node.js 环境中,使用 google-auth-library 库从 ExternalAccountClient 获取 GoogleAuth 对象,以便与 Cloud Run 后端服务进行安全通信。
背景知识
Google Auth Library 提供了多种身份验证方式,其中 ExternalAccountClient 是一种特殊类型的客户端,用于处理外部身份提供者的认证流程。而 GoogleAuth 是一个更高级别的抽象,可以包装各种 AuthClient 实现。
解决方案
方法一:使用 fromJSON 直接创建 GoogleAuth
最直接的方式是使用 GoogleAuth.fromJSON() 方法,该方法可以直接接收与 ExternalAccountClient.fromJSON() 相同的配置参数:
const {GoogleAuth} = require('google-auth-library');
const auth = GoogleAuth.fromJSON({
type: "external_account",
audience: `//iam.googleapis.com/projects/${GCP_PROJECT_NUMBER}/locations/global/workloadIdentityPools/${GCP_WORKLOAD_IDENTITY_POOL_ID}/providers/${GCP_WORKLOAD_IDENTITY_POOL_PROVIDER_ID}`,
subject_token_type: "urn:ietf:params:oauth:token-type:jwt",
token_url: "https://sts.googleapis.com/v1/token",
service_account_impersonation_url: `https://iamcredentials.googleapis.com/v1/projects/-/serviceAccounts/${GCP_SERVICE_ACCOUNT_EMAIL}:generateAccessToken`,
subject_token_supplier: {
getSubjectToken: getVercelOidcToken,
}
});
方法二:将 ExternalAccountClient 传递给 GoogleAuth
如果你已经创建了 ExternalAccountClient 实例,可以直接将其传递给 GoogleAuth 构造函数:
const {GoogleAuth, ExternalAccountClient} = require('google-auth-library');
const authClient = ExternalAccountClient.fromJSON({
// 配置参数同上
});
const auth = new GoogleAuth({
authClient: authClient,
scopes: "https://www.googleapis.com/auth/cloud-platform",
projectId: GCP_PROJECT_ID
});
获取 ID Token 访问 Cloud Run
获取到 GoogleAuth 实例后,就可以轻松获取 ID Token 来访问受保护的 Cloud Run 服务:
const idTokenClient = await auth.getIdTokenClient(backend_url);
const response = await idTokenClient.request({url: backend_url});
最佳实践
-
环境变量管理:建议将 GCP_PROJECT_NUMBER、GCP_WORKLOAD_IDENTITY_POOL_ID 等配置信息存储在环境变量中,而不是硬编码在代码里。
-
错误处理:添加适当的错误处理逻辑,特别是在获取和刷新令牌时。
-
令牌缓存:GoogleAuth 会自动管理令牌的缓存和刷新,无需手动处理。
-
最小权限原则:只为服务账户授予必要的最小权限,而不是使用过于宽泛的权限。
总结
通过上述方法,我们可以在 Node.js 应用中灵活地使用 ExternalAccountClient 和 GoogleAuth 来实现安全的服务间通信。这种方法特别适合在无服务器环境(如 Vercel)中与 Google Cloud 服务进行集成,既保证了安全性,又简化了身份验证流程。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~078CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









