Google Auth Library Node.js 中如何从 ExternalAccountClient 获取 GoogleAuth 对象
在 Google Cloud 开发中,我们经常需要在不同服务之间进行身份验证。本文将详细介绍如何在 Node.js 环境中,使用 google-auth-library 库从 ExternalAccountClient 获取 GoogleAuth 对象,以便与 Cloud Run 后端服务进行安全通信。
背景知识
Google Auth Library 提供了多种身份验证方式,其中 ExternalAccountClient 是一种特殊类型的客户端,用于处理外部身份提供者的认证流程。而 GoogleAuth 是一个更高级别的抽象,可以包装各种 AuthClient 实现。
解决方案
方法一:使用 fromJSON 直接创建 GoogleAuth
最直接的方式是使用 GoogleAuth.fromJSON() 方法,该方法可以直接接收与 ExternalAccountClient.fromJSON() 相同的配置参数:
const {GoogleAuth} = require('google-auth-library');
const auth = GoogleAuth.fromJSON({
type: "external_account",
audience: `//iam.googleapis.com/projects/${GCP_PROJECT_NUMBER}/locations/global/workloadIdentityPools/${GCP_WORKLOAD_IDENTITY_POOL_ID}/providers/${GCP_WORKLOAD_IDENTITY_POOL_PROVIDER_ID}`,
subject_token_type: "urn:ietf:params:oauth:token-type:jwt",
token_url: "https://sts.googleapis.com/v1/token",
service_account_impersonation_url: `https://iamcredentials.googleapis.com/v1/projects/-/serviceAccounts/${GCP_SERVICE_ACCOUNT_EMAIL}:generateAccessToken`,
subject_token_supplier: {
getSubjectToken: getVercelOidcToken,
}
});
方法二:将 ExternalAccountClient 传递给 GoogleAuth
如果你已经创建了 ExternalAccountClient 实例,可以直接将其传递给 GoogleAuth 构造函数:
const {GoogleAuth, ExternalAccountClient} = require('google-auth-library');
const authClient = ExternalAccountClient.fromJSON({
// 配置参数同上
});
const auth = new GoogleAuth({
authClient: authClient,
scopes: "https://www.googleapis.com/auth/cloud-platform",
projectId: GCP_PROJECT_ID
});
获取 ID Token 访问 Cloud Run
获取到 GoogleAuth 实例后,就可以轻松获取 ID Token 来访问受保护的 Cloud Run 服务:
const idTokenClient = await auth.getIdTokenClient(backend_url);
const response = await idTokenClient.request({url: backend_url});
最佳实践
-
环境变量管理:建议将 GCP_PROJECT_NUMBER、GCP_WORKLOAD_IDENTITY_POOL_ID 等配置信息存储在环境变量中,而不是硬编码在代码里。
-
错误处理:添加适当的错误处理逻辑,特别是在获取和刷新令牌时。
-
令牌缓存:GoogleAuth 会自动管理令牌的缓存和刷新,无需手动处理。
-
最小权限原则:只为服务账户授予必要的最小权限,而不是使用过于宽泛的权限。
总结
通过上述方法,我们可以在 Node.js 应用中灵活地使用 ExternalAccountClient 和 GoogleAuth 来实现安全的服务间通信。这种方法特别适合在无服务器环境(如 Vercel)中与 Google Cloud 服务进行集成,既保证了安全性,又简化了身份验证流程。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00