Hopsworks 开源项目教程
2024-09-13 01:16:13作者:段琳惟
1. 项目介绍
Hopsworks 是一个面向机器学习的数据平台,具有 Python 中心化的特征存储(Feature Store)和 MLOps 功能。Hopsworks 是一个模块化平台,可以单独使用其特征存储,管理和服务模型,甚至可以用于开发和操作特征管道和训练管道。Hopsworks 通过提供一个安全、受治理的平台,促进 ML 团队之间的协作,用于开发、管理和共享 ML 资产,如特征、模型、训练数据、批量评分数据、日志等。
2. 项目快速启动
2.1 服务器端(Beta)快速启动
Hopsworks 提供了一个服务器端应用,用户可以通过以下步骤快速启动:
- 访问 Hopsworks 应用。
- 使用 Gmail 或 GitHub 账户注册。
- 注册后,您可以运行教程或直接访问 Hopsworks 并自行尝试。
2.2 代码示例
以下是一个简单的 Python 代码示例,展示如何连接到 Hopsworks 特征存储并创建一个特征组:
from hops import featurestore
# 连接到特征存储
featurestore.connect()
# 创建一个特征组
featurestore.create_featuregroup(
name="example_featuregroup",
version=1,
description="An example feature group",
primary_key=['id'],
features=[
{"name": "id", "type": "int"},
{"name": "feature1", "type": "float"},
{"name": "feature2", "type": "string"}
]
)
3. 应用案例和最佳实践
3.1 欺诈检测(批处理)
Hopsworks 可以用于构建批处理的欺诈检测系统。以下是一个简单的应用案例:
- 案例链接: 欺诈检测(批处理)
3.2 欺诈检测(在线)
Hopsworks 还可以用于构建在线欺诈检测系统,实时监控交易和模式:
- 案例链接: 欺诈检测(在线)
3.3 客户流失预测
使用 Hopsworks 进行客户流失预测,帮助企业提前识别潜在的客户流失风险:
- 案例链接: 客户流失预测
4. 典型生态项目
Hopsworks 可以与多个生态项目集成,以下是一些典型的生态项目:
4.1 Apache Beam
使用 Apache Beam 进行实时特征计算,并与 Hopsworks 特征存储集成:
- 集成链接: Apache Beam 集成
4.2 Weights and Biases
构建机器学习模型,并与 Weights & Biases 集成,用于模型训练和监控:
- 集成链接: Weights and Biases 集成
4.3 Google Cloud Storage
使用 Google Cloud Storage 创建外部特征组,并与 Hopsworks 特征存储集成:
- 集成链接: Google Cloud Storage 集成
通过这些集成,Hopsworks 可以与现有的数据源和工具无缝集成,提供卓越的性能和灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19