Hopsworks 开源项目教程
2024-09-13 22:29:28作者:段琳惟
1. 项目介绍
Hopsworks 是一个面向机器学习的数据平台,具有 Python 中心化的特征存储(Feature Store)和 MLOps 功能。Hopsworks 是一个模块化平台,可以单独使用其特征存储,管理和服务模型,甚至可以用于开发和操作特征管道和训练管道。Hopsworks 通过提供一个安全、受治理的平台,促进 ML 团队之间的协作,用于开发、管理和共享 ML 资产,如特征、模型、训练数据、批量评分数据、日志等。
2. 项目快速启动
2.1 服务器端(Beta)快速启动
Hopsworks 提供了一个服务器端应用,用户可以通过以下步骤快速启动:
- 访问 Hopsworks 应用。
- 使用 Gmail 或 GitHub 账户注册。
- 注册后,您可以运行教程或直接访问 Hopsworks 并自行尝试。
2.2 代码示例
以下是一个简单的 Python 代码示例,展示如何连接到 Hopsworks 特征存储并创建一个特征组:
from hops import featurestore
# 连接到特征存储
featurestore.connect()
# 创建一个特征组
featurestore.create_featuregroup(
name="example_featuregroup",
version=1,
description="An example feature group",
primary_key=['id'],
features=[
{"name": "id", "type": "int"},
{"name": "feature1", "type": "float"},
{"name": "feature2", "type": "string"}
]
)
3. 应用案例和最佳实践
3.1 欺诈检测(批处理)
Hopsworks 可以用于构建批处理的欺诈检测系统。以下是一个简单的应用案例:
- 案例链接: 欺诈检测(批处理)
3.2 欺诈检测(在线)
Hopsworks 还可以用于构建在线欺诈检测系统,实时监控交易和模式:
- 案例链接: 欺诈检测(在线)
3.3 客户流失预测
使用 Hopsworks 进行客户流失预测,帮助企业提前识别潜在的客户流失风险:
- 案例链接: 客户流失预测
4. 典型生态项目
Hopsworks 可以与多个生态项目集成,以下是一些典型的生态项目:
4.1 Apache Beam
使用 Apache Beam 进行实时特征计算,并与 Hopsworks 特征存储集成:
- 集成链接: Apache Beam 集成
4.2 Weights and Biases
构建机器学习模型,并与 Weights & Biases 集成,用于模型训练和监控:
- 集成链接: Weights and Biases 集成
4.3 Google Cloud Storage
使用 Google Cloud Storage 创建外部特征组,并与 Hopsworks 特征存储集成:
- 集成链接: Google Cloud Storage 集成
通过这些集成,Hopsworks 可以与现有的数据源和工具无缝集成,提供卓越的性能和灵活性。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
217
2.23 K

暂无简介
Dart
523
116

React Native鸿蒙化仓库
JavaScript
210
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
33
0