Hyperledger Besu节点启动缓慢问题分析与解决方案
问题现象
在使用Hyperledger Besu v24.7.0版本时,节点启动过程出现异常缓慢的情况。具体表现为服务启动后,日志停留在JNA库提取和secp256k1库加载阶段约10分钟,随后JVM垃圾回收器进入频繁的Young GC循环。
环境配置
- Besu版本: v24.7.0
- Java环境: OpenJDK 21.0.6
- 操作系统: RHEL 8.10 (内核4.18.0-553.44.1.el8_10.x86_64)
- 虚拟化平台: VMware ESXi 6
- 共识机制: QBFT
问题分析
从技术角度来看,该问题主要涉及以下几个层面:
-
JNA库加载延迟:日志显示系统在提取和加载JNA(Java Native Access)库时出现延迟,这通常与系统熵池不足有关。在虚拟化环境中,特别是VMware平台上,默认的熵源可能不足。
-
JVM垃圾回收异常:启动后出现频繁的Young GC,表明内存管理存在问题。虽然用户尝试了多种G1 GC调优参数,但效果不明显,说明根本原因可能在系统层面而非JVM配置。
-
版本升级影响:从v23升级到v24后出现此问题,可能新版本对系统资源或加密操作有更高要求。
根本原因
经过深入分析,确定问题的根本原因是系统熵池不足。在Linux系统中,加密操作(如secp256k1库的加载)需要足够的随机熵源。VMware虚拟化环境默认不提供硬件随机数生成器,导致系统熵池积累缓慢,进而影响加密相关操作的执行速度。
解决方案
安装并配置rng-tools工具来增强系统熵源:
yum install rng-tools
rng-tools是一个Linux下的随机数生成工具,它能够:
- 利用硬件随机数生成器(如果有)
- 在虚拟化环境中模拟更高效的熵源
- 持续填充系统熵池,确保加密操作能快速获取足够的随机数
实施效果
应用该解决方案后:
- Besu节点启动时间从10分钟降至正常水平(通常几十秒)
- JVM垃圾回收行为恢复正常频率
- 系统整体稳定性提高
技术建议
对于在虚拟化环境中运行Besu节点的用户,建议:
-
熵源监控:定期检查系统熵池状态
cat /proc/sys/kernel/random/entropy_avail
-
长期优化:考虑配置持久化的熵源解决方案
-
版本升级:保持Besu和系统组件的最新稳定版本
-
资源监控:建立完善的资源监控机制,及时发现类似性能问题
总结
在区块链节点运维中,系统级配置往往容易被忽视。本例展示了即使是看似简单的熵源问题,也可能导致显著的性能下降。通过系统化的分析和针对性的优化,可以有效解决这类"隐形"的性能瓶颈,确保区块链网络的稳定运行。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0338- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









