Async-profiler v4.0 发布:热力图与原生内存分析功能全面升级
Async-profiler 是一款低开销的 Java 性能分析工具,它通过采样方式收集 JVM 和应用性能数据,支持 CPU、内存、锁等多种分析场景。最新发布的 v4.0 版本带来了多项重大改进,特别是新增了热力图可视化和原生内存泄漏分析功能,进一步提升了性能诊断能力。
核心功能增强
交互式热力图分析
v4.0 版本引入了交互式热力图功能,为开发者提供了全新的性能数据可视化方式。热力图特别适合展示时间序列上的性能指标变化,如 CPU 使用率随时间波动情况。相比传统火焰图,热力图能更直观地呈现性能问题的持续时间段和强度变化。
原生内存泄漏分析
新版本集成了原生内存泄漏分析器,能够追踪 C/C++ 代码中的内存分配情况。这一功能对于混合语言应用尤为重要,开发者现在可以一站式分析 Java 堆内存和原生内存的使用情况,快速定位内存泄漏问题。
JFR 转换工具增强
jfrconv 工具得到了显著增强,支持更多转换选项和输出格式。新增的 --grain 参数允许开发者控制火焰图的粒度,便于在不同抽象层级上分析性能问题。转换器现在能更好地处理自定义 JFR 事件和截断的 JFR 文件。
性能与兼容性改进
多平台支持优化
v4.0 解决了 musl 和 glibc 的兼容性问题,并静态链接 libstdc++ 库,提升了在不同 Linux 发行版上的兼容性。新增的 --libpath 选项简化了容器环境中的库路径配置。
采样机制优化
CPU 分析现在默认使用 ExecutionSample 事件,而 Wall clock 分析使用 WallClockSample 事件,使采样结果更加准确。新增的 --nostop 选项允许分析在指定时间窗口外继续运行,便于捕获偶发性性能问题。
符号解析增强
符号解析能力得到多项改进,包括支持从 debuginfod 缓存加载符号、更好的 Rust v0 符号反混淆,以及更健壮的动态库解析机制。这些改进提升了原生代码分析的准确性。
用户体验提升
火焰图交互增强
火焰图查看器新增了多项交互功能:Alt+Click 可快速移除不需要的调用栈,N/Shift+N 便于在搜索结果间导航,--inverted 选项支持垂直翻转火焰图,满足不同分析习惯。
日志与错误处理
分析器现在会明确记录未收集到样本的情况,帮助开发者判断配置是否正确。错误处理机制更加健壮,能够更好地处理 JVM 加载失败等异常情况。
底层优化
栈遍历改进
ARM64 架构的栈遍历能力得到增强,新增了 VMStructs 基础的栈遍历器(--cstack vm/vmx),提供了更可靠的原生代码调用链捕获方式。
内存与线程安全
修复了多个可能导致崩溃或死锁的问题,特别是在使用 jemalloc/tcmalloc 分析器时。改进了 JNI 引用管理,避免了潜在的 JVM 崩溃风险。
项目基础设施
v4.0 版本周期内,项目基础设施得到全面升级:
- 文档结构重组和内容更新
- 新增集成测试框架和 C++ 单元测试
- 完善 CI 流程,支持多平台测试
- 新增静态分析工具,提升代码质量
- 提供 Dockerfile 简化构建流程
- 自动化夜间构建发布
Async-profiler v4.0 的这些改进使其成为更全面、更可靠的性能分析工具,无论是 Java 应用还是混合语言应用的性能优化,都能提供有力的支持。新加入的热力图和原生内存分析功能,特别适合解决现代分布式系统中的复杂性能问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00