Flet项目新版本依赖管理方案解析
Flet项目在最新版本中对依赖管理进行了重大改进,通过引入Python包的分组安装机制,为开发者提供了更灵活的依赖管理方式。这一改进主要解决了之前版本中全量安装带来的资源浪费问题,特别是在部署场景下不必要的依赖项问题。
原有安装机制的问题
在0.24.1版本中,当用户执行pip install flet
时,会一次性安装所有组件:
- Flet核心库
- Flet运行时
- Flet命令行工具
- Flet桌面端二进制文件
- Flet网页客户端
这种全量安装方式在开发环境中尚可接受,但在生产部署时会造成资源浪费。虽然flet build
命令尝试将flet
替换为精简版的flet-embed
包,但当flet
作为间接依赖存在时,这种替换机制就会失效。
新版本解决方案
Flet 0.25版本引入了基于Python包extras的分组安装机制,允许开发者根据实际需要选择安装特定组件组合。这种设计借鉴了Python生态中成熟的依赖管理实践,为不同使用场景提供了定制化的安装选项。
主要安装选项
-
完整安装(开发环境推荐): 包含全部组件:核心库、CLI工具、网页客户端和桌面端
pip install flet[all]
-
网页端安装(Docker容器部署推荐): 仅包含运行网页应用必需的组件
pip install flet[web]
-
桌面端安装(桌面应用开发推荐): 包含核心库、CLI工具和桌面端组件
pip install flet[desktop]
-
CLI工具安装(CI/CD环境推荐): 仅包含核心库和CLI工具
pip install flet[cli]
向后兼容设计
为了平滑过渡,新版本保留了pip install flet
的安装方式。这种安装方式会:
- 安装Flet核心库
- 安装一个轻量级的shim程序
- 在首次使用时自动检测并安装缺失的CLI工具
这种设计既保证了现有项目的兼容性,又为开发者提供了逐步迁移到新安装方式的时间窗口。
技术实现考量
在技术实现上,项目团队最初尝试使用依赖标记(dependency markers)来动态排除不需要的组件,但发现与Poetry工具链的兼容性存在问题。最终选择了Python包的extras机制,这种方案具有以下优势:
- 明确性:开发者可以清晰表达自己的依赖需求
- 灵活性:支持多种组合安装方式
- 工具兼容性:与主流Python工具链良好兼容
- 可维护性:便于后续扩展新的组件组合
对于使用Poetry的项目,可以通过pyproject.toml文件中的extras部分来声明这些可选依赖,保持项目依赖管理的统一性。
最佳实践建议
- 开发环境:推荐使用
flet[all]
安装全部组件,获得完整的开发体验 - 生产部署:
- Web应用使用
flet[web]
- 桌面应用使用
flet[desktop]
- Web应用使用
- CI/CD管道:使用
flet[cli]
最小化安装,提高构建效率 - 现有项目迁移:可以先保持原有安装方式,逐步测试新安装选项的兼容性
这一改进显著提升了Flet项目在不同场景下的适用性,特别是资源受限环境下的部署效率,同时也为项目的长期维护和扩展奠定了良好的基础。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0121AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









